Hadoop中的context机制用法详解

本篇博客以经典的wordcount程序为例来说明context的用法:
直接上代码:

package MapReduce;

import java.io.IOException;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FSDataInputStream;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Counter;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.JobID;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.input.FileSplit;
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;
import org.apache.hadoop.mapreduce.lib.partition.HashPartitioner;
import org.apache.zookeeper.common.IOUtils;



public class WordCount  
{
    public static String path1 = "file:///C:\\word.txt"; 
    public static String path2 = "file:///C:\\dirout\\";
    public static void main(String[] args) throws Exception
     {

         Configuration conf = new Configuration();

         FileSystem fileSystem = FileSystem.get(conf);//获取本地文件系统中的一个fileSystem实例

         if(fileSystem.exists(new Path(path2)))
         {
             fileSystem.delete(new Path(path2), true);
         }

         Job job = Job.getInstance(conf,"wordcount");

         //job.setJarByClass(WordCount.class);

         FileInputFormat.setInputPaths(job, new Path(path1));
         job.setInputFormatClass(TextInputFormat.class);
         job.setMapperClass(MyMapper.class);
         job.setMapOutputKeyClass(Text.class);
         job.setMapOutputValueClass(LongWritable.class);

         job.setNumReduceTasks(1);
         job.setPartitionerClass(HashPartitioner.class);


         job.setReducerClass(MyReducer.class);
         job.setOutputKeyClass(Text.class);
         job.setOutputValueClass(LongWritable.class);
         job.setOutputFormatClass(TextOutputFormat.class);
         FileOutputFormat.setOutputPath(job, new Path(path2));
         job.waitForCompletion(true);
         //查看运行结果:
         FSDataInputStream fr = fileSystem.open(new Path("file:///C:\\dirout\\part-r-00000"));
         IOUtils.copyBytes(fr, System.out, 1024, true);
     }    
     public  static  class MyMapper extends Mapper<LongWritable, Text, Text, LongWritable>
     {

            protected void map(LongWritable k1, Text v1,Context context)throws IOException, InterruptedException
            {
                 //在这里我们利用context获取日志中的相关数据:键值对信息
                 LongWritable key = context.getCurrentKey();
                 System.out.println(v1.toString()+"对应的起始偏移量是:"+key.get());
                 Text value = context.getCurrentValue();
                 System.out.println("当前文本行是:"+value.toString());
                 //获取当前行文本所对应的文件的信息
                 FileSplit inputSplit = (FileSplit) context.getInputSplit();
                 Path path = inputSplit.getPath();
                 System.out.println(v1.toString()+"对应的文本路径是:"+path);
                 String filename = path.getName();
                 System.out.println(v1.toString()+"对应的文件名是:"+filename);
                 System.out.println("----------------------------------------------------------");



                 //利用context获取计数器,对敏感词汇进行计数
                 Counter counter = context.getCounter("Sensitive Word", "sensitiveword");
                 if(v1.toString().contains("fenlie"))
                 {
                     counter.increment(1L); //如果日志当中包含dalai这个敏感词,自定义计数器加1 
                 }
                 String[] splited = v1.toString().split("\t");


                 for (String string : splited)
                 {
                       context.write(new Text(string),new LongWritable(1L));
                 }
            }   
            protected void cleanup(Context context)throws IOException, InterruptedException
            {
                  String jobName = context.getJobName();
                  System.out.println("当前运行的jobname是:"+jobName);
                  JobID jobID = context.getJobID();
                  System.out.println("当前运行的jobId是:"+jobID);
                  Configuration conf = context.getConfiguration();
                  System.out.println("运行中读取的配置文件是:"+conf);
                  String user = context.getUser();
                  System.out.println("当前操作用户是:"+user);

            }
     }
     public  static class MyReducer extends Reducer<Text, LongWritable, Text, LongWritable>
     {
        protected void reduce(Text k2, Iterable<LongWritable> v2s,Context context)throws IOException, InterruptedException
        {
                 long sum = 0L;
                 for (LongWritable v2 : v2s)
                {
                    sum += v2.get();
                }
                context.write(k2,new LongWritable(sum));
        }
     }
}

运行结果:

2016-07-10 13:29:56,715 INFO  [main] Configuration.deprecation (Configuration.java:warnOnceIfDeprecated(1009)) - session.id is deprecated. Instead, use dfs.metrics.session-id
2016-07-10 13:29:56,719 INFO  [main] jvm.JvmMetrics (JvmMetrics.java:init(76)) - Initializing JVM Metrics with processName=JobTracker, sessionId=
2016-07-10 13:29:57,138 WARN  [main] mapreduce.JobSubmitter (JobSubmitter.java:copyAndConfigureFiles(150)) - Hadoop command-line option parsing not performed. Implement the Tool interface and execute your application with ToolRunner to remedy this.
2016-07-10 13:29:57,142 WARN  [main] mapreduce.JobSubmitter (JobSubmitter.java:copyAndConfigureFiles(259)) - No job jar file set.  User classes may not be found. See Job or Job#setJar(String).
2016-07-10 13:29:57,151 INFO  [main] input.FileInputFormat (FileInputFormat.java:listStatus(280)) - Total input paths to process : 1
2016-07-10 13:29:57,202 INFO  [main] mapreduce.JobSubmitter (JobSubmitter.java:submitJobInternal(396)) - number of splits:1
2016-07-10 13:29:57,350 INFO  [main] mapreduce.JobSubmitter (JobSubmitter.java:printTokens(479)) - Submitting tokens for job: job_local492959629_0001
2016-07-10 13:29:57,426 WARN  [main] conf.Configuration (Configuration.java:loadProperty(2358)) - file:/tmp/hadoop-Administrator/mapred/staging/Administrator492959629/.staging/job_local492959629_0001/job.xml:an attempt to override final parameter: mapreduce.job.end-notification.max.retry.interval;  Ignoring.
2016-07-10 13:29:57,436 WARN  [main] conf.Configuration (Configuration.java:loadProperty(2358)) - file:/tmp/hadoop-Administrator/mapred/staging/Administrator492959629/.staging/job_local492959629_0001/job.xml:an attempt to override final parameter: mapreduce.job.end-notification.max.attempts;  Ignoring.
2016-07-10 13:29:57,648 WARN  [main] conf.Configuration (Configuration.java:loadProperty(2358)) - file:/tmp/hadoop-Administrator/mapred/local/localRunner/Administrator/job_local492959629_0001/job_local492959629_0001.xml:an attempt to override final parameter: mapreduce.job.end-notification.max.retry.interval;  Ignoring.
2016-07-10 13:29:57,656 WARN  [main] conf.Configuration (Configuration.java:loadProperty(2358)) - file:/tmp/hadoop-Administrator/mapred/local/localRunner/Administrator/job_local492959629_0001/job_local492959629_0001.xml:an attempt to override final parameter: mapreduce.job.end-notification.max.attempts;  Ignoring.
2016-07-10 13:29:57,663 INFO  [main] mapreduce.Job (Job.java:submit(1289)) - The url to track the job: http://localhost:8080/
2016-07-10 13:29:57,664 INFO  [main] mapreduce.Job (Job.java:monitorAndPrintJob(1334)) - Running job: job_local492959629_0001
2016-07-10 13:29:57,667 INFO  [Thread-3] mapred.LocalJobRunner (LocalJobRunner.java:createOutputCommitter(471)) - OutputCommitter set in config null
2016-07-10 13:29:57,673 INFO  [Thread-3] mapred.LocalJobRunner (LocalJobRunner.java:createOutputCommitter(489)) - OutputCommitter is org.apache.hadoop.mapreduce.lib.output.FileOutputCommitter
2016-07-10 13:29:57,753 INFO  [Thread-3] mapred.LocalJobRunner (LocalJobRunner.java:runTasks(448)) - Waiting for map tasks
2016-07-10 13:29:57,754 INFO  [LocalJobRunner Map Task Executor #0] mapred.LocalJobRunner (LocalJobRunner.java:run(224)) - Starting task: attempt_local492959629_0001_m_000000_0
2016-07-10 13:29:57,788 INFO  [LocalJobRunner Map Task Executor #0] util.ProcfsBasedProcessTree (ProcfsBasedProcessTree.java:isAvailable(182)) - ProcfsBasedProcessTree currently is supported only on Linux.
2016-07-10 13:29:58,098 INFO  [LocalJobRunner Map Task Executor #0] mapred.Task (Task.java:initialize(581)) -  Using ResourceCalculatorProcessTree : org.apache.hadoop.yarn.util.WindowsBasedProcessTree@3030ff48
2016-07-10 13:29:58,103 INFO  [LocalJobRunner Map Task Executor #0] mapred.MapTask (MapTask.java:runNewMapper(733)) - Processing split: file:/C:/word.txt:0+64
2016-07-10 13:29:58,115 INFO  [LocalJobRunner Map Task Executor #0] mapred.MapTask (MapTask.java:createSortingCollector(388)) - Map output collector class = org.apache.hadoop.mapred.MapTask$MapOutputBuffer
2016-07-10 13:29:58,162 INFO  [LocalJobRunner Map Task Executor #0] mapred.MapTask (MapTask.java:setEquator(1182)) - (EQUATOR) 0 kvi 26214396(104857584)
2016-07-10 13:29:58,162 INFO  [LocalJobRunner Map Task Executor #0] mapred.MapTask (MapTask.java:init(975)) - mapreduce.task.io.sort.mb: 100
2016-07-10 13:29:58,162 INFO  [LocalJobRunner Map Task Executor #0] mapred.MapTask (MapTask.java:init(976)) - soft limit at 83886080
2016-07-10 13:29:58,163 INFO  [LocalJobRunner Map Task Executor #0] mapred.MapTask (MapTask.java:init(977)) - bufstart = 0; bufvoid = 104857600
2016-07-10 13:29:58,163 INFO  [LocalJobRunner Map Task Executor #0] mapred.MapTask (MapTask.java:init(978)) - kvstart = 26214396; length = 6553600
hello   you对应的起始偏移量是:0
当前文本行是:hello    you
hello   you对应的文本路径是:file:/C:/word.txt
hello   you对应的文件名是:word.txt
----------------------------------------------------------
hello   me对应的起始偏移量是:11
当前文本行是:hello    me
hello   me对应的文本路径是:file:/C:/word.txt
hello   me对应的文件名是:word.txt
----------------------------------------------------------
hello   she对应的起始偏移量是:21
当前文本行是:hello    she
hello   she对应的文本路径是:file:/C:/word.txt
hello   she对应的文件名是:word.txt
----------------------------------------------------------
hello   he对应的起始偏移量是:32
当前文本行是:hello    he
hello   he对应的文本路径是:file:/C:/word.txt
hello   he对应的文件名是:word.txt
----------------------------------------------------------
hello   he对应的起始偏移量是:42
当前文本行是:hello    he
hello   he对应的文本路径是:file:/C:/word.txt
hello   he对应的文件名是:word.txt
----------------------------------------------------------
fenlie  hello对应的起始偏移量是:52
当前文本行是:fenlie   hello
fenlie  hello对应的文本路径是:file:/C:/word.txt
fenlie  hello对应的文件名是:word.txt
----------------------------------------------------------
当前运行的jobname是:wordcount
当前运行的jobId是:job_local492959629_0001
运行中读取的配置文件是:Configuration: core-default.xml, core-site.xml, mapred-default.xml, mapred-site.xml, yarn-default.xml, yarn-site.xml, hdfs-default.xml, hdfs-site.xml, file:/tmp/hadoop-Administrator/mapred/local/localRunner/Administrator/job_local492959629_0001/job_local492959629_0001.xml
当前操作用户是:Administrator
2016-07-10 13:29:58,177 INFO  [LocalJobRunner Map Task Executor #0] mapred.LocalJobRunner (LocalJobRunner.java:statusUpdate(591)) - 
2016-07-10 13:29:58,177 INFO  [LocalJobRunner Map Task Executor #0] mapred.MapTask (MapTask.java:flush(1437)) - Starting flush of map output
2016-07-10 13:29:58,178 INFO  [LocalJobRunner Map Task Executor #0] mapred.MapTask (MapTask.java:flush(1455)) - Spilling map output
2016-07-10 13:29:58,178 INFO  [LocalJobRunner Map Task Executor #0] mapred.MapTask (MapTask.java:flush(1456)) - bufstart = 0; bufend = 156; bufvoid = 104857600
2016-07-10 13:29:58,178 INFO  [LocalJobRunner Map Task Executor #0] mapred.MapTask (MapTask.java:flush(1458)) - kvstart = 26214396(104857584); kvend = 26214352(104857408); length = 45/6553600
2016-07-10 13:29:58,202 INFO  [LocalJobRunner Map Task Executor #0] mapred.MapTask (MapTask.java:sortAndSpill(1641)) - Finished spill 0
2016-07-10 13:29:58,212 INFO  [LocalJobRunner Map Task Executor #0] mapred.Task (Task.java:done(995)) - Task:attempt_local492959629_0001_m_000000_0 is done. And is in the process of committing
2016-07-10 13:29:58,224 INFO  [LocalJobRunner Map Task Executor #0] mapred.LocalJobRunner (LocalJobRunner.java:statusUpdate(591)) - map
2016-07-10 13:29:58,224 INFO  [LocalJobRunner Map Task Executor #0] mapred.Task (Task.java:sendDone(1115)) - Task 'attempt_local492959629_0001_m_000000_0' done.
2016-07-10 13:29:58,224 INFO  [LocalJobRunner Map Task Executor #0] mapred.LocalJobRunner (LocalJobRunner.java:run(249)) - Finishing task: attempt_local492959629_0001_m_000000_0
2016-07-10 13:29:58,225 INFO  [Thread-3] mapred.LocalJobRunner (LocalJobRunner.java:runTasks(456)) - map task executor complete.
2016-07-10 13:29:58,229 INFO  [Thread-3] mapred.LocalJobRunner (LocalJobRunner.java:runTasks(448)) - Waiting for reduce tasks
2016-07-10 13:29:58,229 INFO  [pool-3-thread-1] mapred.LocalJobRunner (LocalJobRunner.java:run(302)) - Starting task: attempt_local492959629_0001_r_000000_0
2016-07-10 13:29:58,247 INFO  [pool-3-thread-1] util.ProcfsBasedProcessTree (ProcfsBasedProcessTree.java:isAvailable(182)) - ProcfsBasedProcessTree currently is supported only on Linux.
2016-07-10 13:29:58,334 INFO  [pool-3-thread-1] mapred.Task (Task.java:initialize(581)) -  Using ResourceCalculatorProcessTree : org.apache.hadoop.yarn.util.WindowsBasedProcessTree@c8a80d8
2016-07-10 13:29:58,338 INFO  [pool-3-thread-1] mapred.ReduceTask (ReduceTask.java:run(362)) - Using ShuffleConsumerPlugin: org.apache.hadoop.mapreduce.task.reduce.Shuffle@50d379e8
2016-07-10 13:29:58,351 INFO  [pool-3-thread-1] reduce.MergeManagerImpl (MergeManagerImpl.java:<init>(193)) - MergerManager: memoryLimit=1331114752, maxSingleShuffleLimit=332778688, mergeThreshold=878535744, ioSortFactor=10, memToMemMergeOutputsThreshold=10
2016-07-10 13:29:58,354 INFO  [EventFetcher for fetching Map Completion Events] reduce.EventFetcher (EventFetcher.java:run(61)) - attempt_local492959629_0001_r_000000_0 Thread started: EventFetcher for fetching Map Completion Events
2016-07-10 13:29:58,381 INFO  [localfetcher#1] reduce.LocalFetcher (LocalFetcher.java:copyMapOutput(140)) - localfetcher#1 about to shuffle output of map attempt_local492959629_0001_m_000000_0 decomp: 182 len: 186 to MEMORY
2016-07-10 13:29:58,390 INFO  [localfetcher#1] reduce.InMemoryMapOutput (InMemoryMapOutput.java:shuffle(100)) - Read 182 bytes from map-output for attempt_local492959629_0001_m_000000_0
2016-07-10 13:29:58,419 INFO  [localfetcher#1] reduce.MergeManagerImpl (MergeManagerImpl.java:closeInMemoryFile(307)) - closeInMemoryFile -> map-output of size: 182, inMemoryMapOutputs.size() -> 1, commitMemory -> 0, usedMemory ->182
2016-07-10 13:29:58,420 INFO  [EventFetcher for fetching Map Completion Events] reduce.EventFetcher (EventFetcher.java:run(76)) - EventFetcher is interrupted.. Returning
2016-07-10 13:29:58,421 INFO  [pool-3-thread-1] mapred.LocalJobRunner (LocalJobRunner.java:statusUpdate(591)) - 1 / 1 copied.
2016-07-10 13:29:58,422 INFO  [pool-3-thread-1] reduce.MergeManagerImpl (MergeManagerImpl.java:finalMerge(667)) - finalMerge called with 1 in-memory map-outputs and 0 on-disk map-outputs
2016-07-10 13:29:58,445 INFO  [pool-3-thread-1] mapred.Merger (Merger.java:merge(591)) - Merging 1 sorted segments
2016-07-10 13:29:58,445 INFO  [pool-3-thread-1] mapred.Merger (Merger.java:merge(690)) - Down to the last merge-pass, with 1 segments left of total size: 173 bytes
2016-07-10 13:29:58,450 INFO  [pool-3-thread-1] reduce.MergeManagerImpl (MergeManagerImpl.java:finalMerge(742)) - Merged 1 segments, 182 bytes to disk to satisfy reduce memory limit
2016-07-10 13:29:58,451 INFO  [pool-3-thread-1] reduce.MergeManagerImpl (MergeManagerImpl.java:finalMerge(772)) - Merging 1 files, 186 bytes from disk
2016-07-10 13:29:58,452 INFO  [pool-3-thread-1] reduce.MergeManagerImpl (MergeManagerImpl.java:finalMerge(787)) - Merging 0 segments, 0 bytes from memory into reduce
2016-07-10 13:29:58,452 INFO  [pool-3-thread-1] mapred.Merger (Merger.java:merge(591)) - Merging 1 sorted segments
2016-07-10 13:29:58,453 INFO  [pool-3-thread-1] mapred.Merger (Merger.java:merge(690)) - Down to the last merge-pass, with 1 segments left of total size: 173 bytes
2016-07-10 13:29:58,453 INFO  [pool-3-thread-1] mapred.LocalJobRunner (LocalJobRunner.java:statusUpdate(591)) - 1 / 1 copied.
2016-07-10 13:29:58,467 INFO  [pool-3-thread-1] Configuration.deprecation (Configuration.java:warnOnceIfDeprecated(1009)) - mapred.skip.on is deprecated. Instead, use mapreduce.job.skiprecords
2016-07-10 13:29:58,474 INFO  [pool-3-thread-1] mapred.Task (Task.java:done(995)) - Task:attempt_local492959629_0001_r_000000_0 is done. And is in the process of committing
2016-07-10 13:29:58,476 INFO  [pool-3-thread-1] mapred.LocalJobRunner (LocalJobRunner.java:statusUpdate(591)) - 1 / 1 copied.
2016-07-10 13:29:58,476 INFO  [pool-3-thread-1] mapred.Task (Task.java:commit(1156)) - Task attempt_local492959629_0001_r_000000_0 is allowed to commit now
2016-07-10 13:29:58,483 INFO  [pool-3-thread-1] output.FileOutputCommitter (FileOutputCommitter.java:commitTask(439)) - Saved output of task 'attempt_local492959629_0001_r_000000_0' to file:/C:/dirout/_temporary/0/task_local492959629_0001_r_000000
2016-07-10 13:29:58,484 INFO  [pool-3-thread-1] mapred.LocalJobRunner (LocalJobRunner.java:statusUpdate(591)) - reduce > reduce
2016-07-10 13:29:58,484 INFO  [pool-3-thread-1] mapred.Task (Task.java:sendDone(1115)) - Task 'attempt_local492959629_0001_r_000000_0' done.
2016-07-10 13:29:58,484 INFO  [pool-3-thread-1] mapred.LocalJobRunner (LocalJobRunner.java:run(325)) - Finishing task: attempt_local492959629_0001_r_000000_0
2016-07-10 13:29:58,484 INFO  [Thread-3] mapred.LocalJobRunner (LocalJobRunner.java:runTasks(456)) - reduce task executor complete.
2016-07-10 13:29:58,666 INFO  [main] mapreduce.Job (Job.java:monitorAndPrintJob(1355)) - Job job_local492959629_0001 running in uber mode : false
2016-07-10 13:29:58,667 INFO  [main] mapreduce.Job (Job.java:monitorAndPrintJob(1362)) -  map 100% reduce 100%
2016-07-10 13:29:58,668 INFO  [main] mapreduce.Job (Job.java:monitorAndPrintJob(1373)) - Job job_local492959629_0001 completed successfully
2016-07-10 13:29:58,679 INFO  [main] mapreduce.Job (Job.java:monitorAndPrintJob(1380)) - Counters: 34
    File System Counters
        FILE: Number of bytes read=804
        FILE: Number of bytes written=462717
        FILE: Number of read operations=0
        FILE: Number of large read operations=0
        FILE: Number of write operations=0
    Map-Reduce Framework
        Map input records=6
        Map output records=12
        Map output bytes=156
        Map output materialized bytes=186
        Input split bytes=82
        Combine input records=0
        Combine output records=0
        Reduce input groups=6
        Reduce shuffle bytes=186
        Reduce input records=12
        Reduce output records=6
        Spilled Records=24
        Shuffled Maps =1
        Failed Shuffles=0
        Merged Map outputs=1
        GC time elapsed (ms)=7
        CPU time spent (ms)=0
        Physical memory (bytes) snapshot=0
        Virtual memory (bytes) snapshot=0
        Total committed heap usage (bytes)=467664896
    Sensitive Word
        sensitiveword=1
    Shuffle Errors
        BAD_ID=0
        CONNECTION=0
        IO_ERROR=0
        WRONG_LENGTH=0
        WRONG_MAP=0
        WRONG_REDUCE=0
    File Input Format Counters 
        Bytes Read=64
    File Output Format Counters 
        Bytes Written=51
fenlie  1
he  2
hello   6
me  1
she 1
you 1

特别说明:
1、计数器counter是全局的。 换言之,MapReduce框架将跨所有map和reduce聚集这些计数器,并在作业结束 时产生一个最终结果。
2、Configuration: core-site.xml, mapred-site.xml, yarn-site.xml, hdfs-site.xml这四个配置文件读取的方式分为3种:
第一:用Hadoop的集群模式运行程序,将会读取hadoop中这几个配置文件的内容。
第二:将这个xxx-site.xml加载到eclipse的工程src中
第三:在代码中用 conf.set(name, value)的方式进行指定

你可能感兴趣的:(mapreduce,context,counter计数器)