drawContours函数

1、drawContours函数的作用

主要用于画出图像的轮廓

2、函数的调用形式

void drawContours(InputOutputArray image, InputArrayOfArrays contours, int contourIdx, const Scalar& color, int thickness=1, int lineType=8, InputArray hierarchy=noArray(), int maxLevel=INT_MAX, Point offset=Point() )

函数参数详解:

其中第一个参数image表示目标图像,

第二个参数contours表示输入的轮廓组,每一组轮廓由点vector构成,

第三个参数contourIdx指明画第几个轮廓,如果该参数为负值,则画全部轮廓,

第四个参数color为轮廓的颜色,

第五个参数thickness为轮廓的线宽,如果为负值或CV_FILLED表示填充轮廓内部,

第六个参数lineType为线型,

第七个参数为轮廓结构信息,

第八个参数为maxLevel



opencv代码:

#include "cv.h"
#include "highgui.h"

using namespace cv;

int main( int argc, char** argv )
{
    Mat src;
    // the first command-line parameter must be a filename of the binary
    // (black-n-white) image
    if( argc != 2 || !(src=imread(argv[1], 0)).data)
        return -1;

    Mat dst = Mat::zeros(src.rows, src.cols, CV_8UC3);

    src = src > 1;
    namedWindow( "Source", 1 );
    imshow( "Source", src );

    vector<vector<Point> > contours;
    vector<Vec4i> hierarchy;

    findContours( src, contours, hierarchy,
        CV_RETR_CCOMP, CV_CHAIN_APPROX_SIMPLE );

    // iterate through all the top-level contours,
    // draw each connected component with its own random color
    int idx = 0;
    for( ; idx >= 0; idx = hierarchy[idx][0] )
    {
        Scalar color( rand()&255, rand()&255, rand()&255 );
        drawContours( dst, contours, idx, color, CV_FILLED, 8, hierarchy );
    }

    namedWindow( "Components", 1 );
    imshow( "Components", dst );
    waitKey(0);
}


提取到轮廓后,其实我们更关心的是如果把这些轮廓转换为可以利用的特征,也就是涉及到轮廓的描述问题,这时就有多种方法可以选择,比如矢量化为多边形、矩形、椭圆等。OpenCV里提供了一些这样的函数。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
// 轮廓表示为一个矩形
Rect r = boundingRect(Mat(contours[0]));
rectangle(result, r, Scalar(255), 2);
 
// 轮廓表示为一个圆
float radius;
Point2f center;
minEnclosingCircle(Mat(contours[1]), center, radius);
circle(result, Point(center), static_cast < int >(radius), Scalar(255), 2);
 
// 轮廓表示为一个多边形
vector<Point> poly;
approxPolyDP(Mat(contours[2]), poly, 5, true );
vector<Point>::const_iterator itp = poly.begin();
while (itp != (poly.end() - 1))
{
     line(result, *itp, *(itp + 1), Scalar(255), 2);
     ++itp;
}
line(result, *itp, *(poly.begin()), Scalar(255), 2);
// 轮廓表示为凸多边形
vector<Point> hull;
convexHull(Mat(contours[3]), hull);
vector<Point>::const_iterator ith = hull.begin();
while (ith != (hull.end() - 1))
{
     line(result, *ith, *(ith + 1), Scalar(255), 2);
     ++ith;
}
line(result, *ith, *(hull.begin()), Scalar(255), 2);

对连通区域的分析到此远远没有结束,我们可以进一步计算每一个连通区域的其他属性,比如:重心、中心矩等特征,这些内容以后有机会展开来写。

以下几个函数可以尝试:minAreaRect:计算一个最小面积的外接矩形,contourArea可以计算轮廓内连通区域的面积;pointPolygenTest可以用来判断一个点是否在一个多边形内。mathShapes可以比较两个形状的相似性,相当有用的一个函数。


你可能感兴趣的:(drawContours函数)