1、Accumulators和Broadcast基础理解
共享变量
共享变量目的是将一个变量缓存在每台机器上,而不用在任务之间传递。在SparkCore中经常广播一些环境变量,
目的是使得在同一时间集群中的每台机器的环境变量都更新。它的功能是用于有效地给每个节点输入一个环境变量
或者数据集副本,這样可以减少通信的开销。這样使得我们在多个任务之间使用相同数据的时候,创建广播变量结
合并行处理,這样可以加快处理。下面通过源码来分析一下Accumulators和Broadcast
广播变量(Broadcast)
package org.apache.spark.broadcast import java.io.Serializable import scala.reflect.ClassTag import org.apache.spark.SparkException import org.apache.spark.internal.Logging import org.apache.spark.util.Utils /** * A broadcast variable. Broadcast variables allow the programmer to keep a read-only variable * cached on each machine rather than shipping a copy of it with tasks. They can be used, for * example, to give every node a copy of a large input dataset in an efficient manner. Spark also * attempts to distribute broadcast variables using efficient broadcast algorithms to reduce * communication cost. * 广播变量允许程序员将一个只读的变量缓存在每台机器上,而不是复制一份数据在task运行。它可以被允许有效 * 的给每个节点一个大数据集的副本。Spark还尝试高效的算法来广播变量,以减少通宵消耗 * Broadcast variables are created from a variable `v` by calling * [[org.apache.spark.SparkContext#broadcast]]. * The broadcast variable is a wrapper around `v`, and its value can be accessed by calling the * `value` method. The interpreter session below shows this: * * {{{ * scala> val broadcastVar = sc.broadcast(Array(1, 2, 3)) * broadcastVar: org.apache.spark.broadcast.Broadcast[Array[Int]] = Broadcast(0) * * scala> broadcastVar.value * res0: Array[Int] = Array(1, 2, 3) * }}} * * After the broadcast variable is created, it should be used instead of the value `v` in any * functions run on the cluster so that `v` is not shipped to the nodes more than once. * In addition, the object `v` should not be modified after it is broadcast in order to ensure * that all nodes get the same value of the broadcast variable (e.g. if the variable is shipped * to a new node later). * 广播变量之后,它可以应用在集群中的任何函数,为了保证所有节点得到相同的广播值,它的数值是不可以改变的 * @param id A unique identifier for the broadcast variable. * @tparam T Type of the data contained in the broadcast variable. */ abstract class Broadcast[T: ClassTag](val id: Long) extends Serializable with Logging { /** * Flag signifying whether the broadcast variable is valid * (that is, not already destroyed) or not. */ @volatile private var _isValid = true private var _destroySite = "" /** Get the broadcasted value. */ def value: T = { assertValid() getValue() } /** * Asynchronously delete cached copies of this broadcast on the executors. * If the broadcast is used after this is called, it will need to be re-sent to each executor. */ def unpersist() { unpersist(blocking = false) } /** * Delete cached copies of this broadcast on the executors. If the broadcast is used after * this is called, it will need to be re-sent to each executor. * @param blocking Whether to block until unpersisting has completed */ def unpersist(blocking: Boolean) { assertValid() doUnpersist(blocking) } /** * Destroy all data and metadata related to this broadcast variable. Use this with caution; * once a broadcast variable has been destroyed, it cannot be used again. * This method blocks until destroy has completed */ def destroy() { destroy(blocking = true) } /** * Destroy all data and metadata related to this broadcast variable. Use this with caution; * once a broadcast variable has been destroyed, it cannot be used again. * @param blocking Whether to block until destroy has completed */ private[spark] def destroy(blocking: Boolean) { assertValid() _isValid = false _destroySite = Utils.getCallSite().shortForm logInfo("Destroying %s (from %s)".format(toString, _destroySite)) doDestroy(blocking) } /** * Whether this Broadcast is actually usable. This should be false once persisted state is * removed from the driver. */ private[spark] def isValid: Boolean = { _isValid } /** * Actually get the broadcasted value. Concrete implementations of Broadcast class must * define their own way to get the value. */ protected def getValue(): T /** * Actually unpersist the broadcasted value on the executors. Concrete implementations of * Broadcast class must define their own logic to unpersist their own data. */ protected def doUnpersist(blocking: Boolean) /** * Actually destroy all data and metadata related to this broadcast variable. * Implementation of Broadcast class must define their own logic to destroy their own * state. */ protected def doDestroy(blocking: Boolean) /** Check if this broadcast is valid. If not valid, exception is thrown. */ protected def assertValid() { if (!_isValid) { throw new SparkException( "Attempted to use %s after it was destroyed (%s) ".format(toString, _destroySite)) } } override def toString: String = "Broadcast(" + id + ")" }
累加器(Accumulators)
package org.apache.spark /** * A simpler value of [[Accumulable]] where the result type being accumulated is the same * as the types of elements being merged, i.e. variables that are only "added" to through an * associative and commutative operation and can therefore be efficiently supported in parallel. * They can be used to implement counters (as in MapReduce) or sums. Spark natively supports * accumulators of numeric value types, and programmers can add support for new types. * 1、累加器仅仅支持累加操作(added),目的是有效的支持并行 2、他们可以用来进行计数和累加,spark天生支持数值类型的累加,同时程序员也可以自己定义类型 * An accumulator is created from an initial value `v` by calling * [[SparkContext#accumulator SparkContext.accumulator]]. * Tasks running on the cluster can then add to it using the [[Accumulable#+= +=]] operator. * However, they cannot read its value. Only the driver program can read the accumulator's value, * using its [[#value]] method. * * The interpreter session below shows an accumulator being used to add up the elements of an array: * * {{{ * scala> val accum = sc.accumulator(0) * accum: org.apache.spark.Accumulator[Int] = 0 * * scala> sc.parallelize(Array(1, 2, 3, 4)).foreach(x => accum += x) * ... * 10/09/29 18:41:08 INFO SparkContext: Tasks finished in 0.317106 s * * scala> accum.value * res2: Int = 10 * }}} * * @param initialValue initial value of accumulator * @param param helper object defining how to add elements of type `T` * @param name human-readable name associated with this accumulator * @param countFailedValues whether to accumulate values from failed tasks * @tparam T result type */ @deprecated("use AccumulatorV2", "2.0.0") class Accumulator[T] private[spark] ( // SI-8813: This must explicitly be a private val, or else scala 2.11 doesn't compile @transient private val initialValue: T, param: AccumulatorParam[T], name: Option[String] = None, countFailedValues: Boolean = false) extends Accumulable[T, T](initialValue, param, name, countFailedValues) /** * A simpler version of [[org.apache.spark.AccumulableParam]] where the only data type you can add * in is the same type as the accumulated value. An implicit AccumulatorParam object needs to be * available when you create Accumulators of a specific type. * * @tparam T type of value to accumulate */ @deprecated("use AccumulatorV2", "2.0.0") trait AccumulatorParam[T] extends AccumulableParam[T, T] { def addAccumulator(t1: T, t2: T): T = { addInPlace(t1, t2) } } @deprecated("use AccumulatorV2", "2.0.0") object AccumulatorParam { // The following implicit objects were in SparkContext before 1.2 and users had to // `import SparkContext._` to enable them. Now we move them here to make the compiler find // them automatically. However, as there are duplicate codes in SparkContext for backward // compatibility, please update them accordingly if you modify the following implicit objects. @deprecated("use AccumulatorV2", "2.0.0") implicit object DoubleAccumulatorParam extends AccumulatorParam[Double] { def addInPlace(t1: Double, t2: Double): Double = t1 + t2 def zero(initialValue: Double): Double = 0.0 } @deprecated("use AccumulatorV2", "2.0.0") implicit object IntAccumulatorParam extends AccumulatorParam[Int] { def addInPlace(t1: Int, t2: Int): Int = t1 + t2 def zero(initialValue: Int): Int = 0 } @deprecated("use AccumulatorV2", "2.0.0") implicit object LongAccumulatorParam extends AccumulatorParam[Long] { def addInPlace(t1: Long, t2: Long): Long = t1 + t2 def zero(initialValue: Long): Long = 0L } @deprecated("use AccumulatorV2", "2.0.0") implicit object FloatAccumulatorParam extends AccumulatorParam[Float] { def addInPlace(t1: Float, t2: Float): Float = t1 + t2 def zero(initialValue: Float): Float = 0f } // Note: when merging values, this param just adopts the newer value. This is used only // internally for things that shouldn't really be accumulated across tasks, like input // read method, which should be the same across all tasks in the same stage. @deprecated("use AccumulatorV2", "2.0.0") private[spark] object StringAccumulatorParam extends AccumulatorParam[String] { def addInPlace(t1: String, t2: String): String = t2 def zero(initialValue: String): String = "" } }对其大概有个了解,我们再来看下面实验程序
import org.apache.spark.{SparkConf, SparkContext} object broadCastTest { def main(args: Array[String]) { val conf = new SparkConf().setAppName("broadCastTest").setMaster("local") val sc = new SparkContext(conf) val RDD = sc.parallelize(List(1,2,3)) //broadcast val broadValue1 = sc.broadcast(2) val data1 = RDD.map(x => x*broadValue1.value) data1.foreach(x => println("broadcast value:"+x)) //accumulator var accumulator = sc.accumulator(2) //错误 val RDD2 = sc.parallelize(List(1,1,1)).map{ x=> if(x<3){ accumulator+=1 } x*accumulator.value }//(x => x*accumulator.value) //此处还没有报错 println(RDD2) //此处开始报错 //RDD2.foreach(println) // 這里报错:Can't read accumulator value in task //這个操作没有报错 RDD.foreach{x => if(x<3){ accumulator+=1 } } println("accumulator is "+accumulator.value) // accumulator 说明了两点: //(1): 累加器只有在执行Action的时候,才被更新 //(2):我们在task的时候不能读取它的值,只有驱动程序才可以读取它的值 sc.stop() } }
从Accumulator源码中可以看到,我们可以用AccumulatorParam接口实现自己的累加器
它有两个方法,
def addInPlace(t1: T, t2: T): T = t1 + t2
def zero(initialValue: T): T = 0.0
下面按照自己定义的类型,写一个
import org.apache.spark.{AccumulatorParam, SparkConf, SparkContext} object listAccumulatorParam extends AccumulatorParam[List[Double]] { def zero(initialValue: List[Double]): List[Double] = { Nil } def addInPlace(v1: List[Double], v2: List[Double]): List[Double] = { v1:::v2 } } object broadCastTest { def main(args: Array[String]) { val conf = new SparkConf().setAppName("broadCastTest").setMaster("local") val sc = new SparkContext(conf) val myAccumulator = sc.accumulator[List[Double]](List(0.1,0.2,0.3))(listAccumulatorParam) println("my accumulator is "+myAccumulator.value) //my accumulator is List(0.1, 0.2, 0.3) sc.stop() } }SparkStreaming中应用 Accumulators和Broadcast
通过对一些特有的字符串广播,然后进行过滤,比如我们可以把一些人的名字给过滤掉,也就是黑名单的过滤,如下实现过滤三个字符串 a,b,c.从下面的数据中每秒产生一个字母
a
b
c
d
e
f
g
h
i
过滤的SparkStreaming程序如下:
import org.apache.log4j.{Level, Logger} import org.apache.spark.{Accumulator, SparkConf} import org.apache.spark.broadcast.Broadcast import org.apache.spark.streaming.{Seconds, StreamingContext} object broadCastTest { @volatile private var broadcastValue: Broadcast[Seq[String]] = null @volatile private var accumulatorValue:Accumulator[Int] = null def main(args: Array[String]) { Logger.getLogger("org.apache.spark").setLevel(Level.ERROR) Logger.getLogger("org.eclipse.jetty.Server").setLevel(Level.OFF) val conf = new SparkConf().setAppName("broadCastTest").setMaster("local[2]") val ssc = new StreamingContext(conf, Seconds(2)) broadcastValue = ssc.sparkContext.broadcast(Seq("a","b","c")) accumulatorValue = ssc.sparkContext.accumulator(0, "OnlineBlacklistCounter") val linesData = ssc.socketTextStream("master",9999) val wordCount = linesData.map(x =>(x,1)).reduceByKey(_+_) val counts = wordCount.filter{ case (word,count) => if(broadcastValue.value.contains(word)){ accumulatorValue += count //println("have blocked "+accumulatorValue+" times") false }else{ //println("have blocked "+accumulatorValue+" times") true } } //println("broadcastValue:"+broadcastValue.value) counts.print() //wordCount.print() ssc.start() ssc.awaitTermination() } }