SparkStreaming之Accumulators和Broadcast

1、Accumulators和Broadcast基础理解

共享变量

共享变量目的是将一个变量缓存在每台机器上,而不用在任务之间传递。在SparkCore中经常广播一些环境变量,

目的是使得在同一时间集群中的每台机器的环境变量都更新。它的功能是用于有效地给每个节点输入一个环境变量

或者数据集副本,這样可以减少通信的开销。這样使得我们在多个任务之间使用相同数据的时候,创建广播变量结

合并行处理,這样可以加快处理。下面通过源码来分析一下Accumulators和Broadcast

广播变量(Broadcast)

package org.apache.spark.broadcast

import java.io.Serializable

import scala.reflect.ClassTag

import org.apache.spark.SparkException
import org.apache.spark.internal.Logging
import org.apache.spark.util.Utils

/**
 * A broadcast variable. Broadcast variables allow the programmer to keep a read-only variable
 * cached on each machine rather than shipping a copy of it with tasks. They can be used, for
 * example, to give every node a copy of a large input dataset in an efficient manner. Spark also
 * attempts to distribute broadcast variables using efficient broadcast algorithms to reduce
 * communication cost.
 * 广播变量允许程序员将一个只读的变量缓存在每台机器上,而不是复制一份数据在task运行。它可以被允许有效
 * 的给每个节点一个大数据集的副本。Spark还尝试高效的算法来广播变量,以减少通宵消耗
 * Broadcast variables are created from a variable `v` by calling
 * [[org.apache.spark.SparkContext#broadcast]].
 * The broadcast variable is a wrapper around `v`, and its value can be accessed by calling the
 * `value` method. The interpreter session below shows this:
 *
 * {{{
 * scala> val broadcastVar = sc.broadcast(Array(1, 2, 3))
 * broadcastVar: org.apache.spark.broadcast.Broadcast[Array[Int]] = Broadcast(0)
 *
 * scala> broadcastVar.value
 * res0: Array[Int] = Array(1, 2, 3)
 * }}}
 *
 * After the broadcast variable is created, it should be used instead of the value `v` in any
 * functions run on the cluster so that `v` is not shipped to the nodes more than once.
 * In addition, the object `v` should not be modified after it is broadcast in order to ensure
 * that all nodes get the same value of the broadcast variable (e.g. if the variable is shipped
 * to a new node later).
 *  广播变量之后,它可以应用在集群中的任何函数,为了保证所有节点得到相同的广播值,它的数值是不可以改变的
 * @param id A unique identifier for the broadcast variable.
 * @tparam T Type of the data contained in the broadcast variable.
 */
abstract class Broadcast[T: ClassTag](val id: Long) extends Serializable with Logging {

  /**
   * Flag signifying whether the broadcast variable is valid
   * (that is, not already destroyed) or not.
   */
  @volatile private var _isValid = true

  private var _destroySite = ""

  /** Get the broadcasted value. */
  def value: T = {
    assertValid()
    getValue()
  }

  /**
   * Asynchronously delete cached copies of this broadcast on the executors.
   * If the broadcast is used after this is called, it will need to be re-sent to each executor.
   */
  def unpersist() {
    unpersist(blocking = false)
  }

  /**
   * Delete cached copies of this broadcast on the executors. If the broadcast is used after
   * this is called, it will need to be re-sent to each executor.
   * @param blocking Whether to block until unpersisting has completed
   */
  def unpersist(blocking: Boolean) {
    assertValid()
    doUnpersist(blocking)
  }


  /**
   * Destroy all data and metadata related to this broadcast variable. Use this with caution;
   * once a broadcast variable has been destroyed, it cannot be used again.
   * This method blocks until destroy has completed
   */
  def destroy() {
    destroy(blocking = true)
  }

  /**
   * Destroy all data and metadata related to this broadcast variable. Use this with caution;
   * once a broadcast variable has been destroyed, it cannot be used again.
   * @param blocking Whether to block until destroy has completed
   */
  private[spark] def destroy(blocking: Boolean) {
    assertValid()
    _isValid = false
    _destroySite = Utils.getCallSite().shortForm
    logInfo("Destroying %s (from %s)".format(toString, _destroySite))
    doDestroy(blocking)
  }

  /**
   * Whether this Broadcast is actually usable. This should be false once persisted state is
   * removed from the driver.
   */
  private[spark] def isValid: Boolean = {
    _isValid
  }

  /**
   * Actually get the broadcasted value. Concrete implementations of Broadcast class must
   * define their own way to get the value.
   */
  protected def getValue(): T

  /**
   * Actually unpersist the broadcasted value on the executors. Concrete implementations of
   * Broadcast class must define their own logic to unpersist their own data.
   */
  protected def doUnpersist(blocking: Boolean)

  /**
   * Actually destroy all data and metadata related to this broadcast variable.
   * Implementation of Broadcast class must define their own logic to destroy their own
   * state.
   */
  protected def doDestroy(blocking: Boolean)

  /** Check if this broadcast is valid. If not valid, exception is thrown. */
  protected def assertValid() {
    if (!_isValid) {
      throw new SparkException(
        "Attempted to use %s after it was destroyed (%s) ".format(toString, _destroySite))
    }
  }

  override def toString: String = "Broadcast(" + id + ")"
}

累加器(Accumulators)

package org.apache.spark

/**
 * A simpler value of [[Accumulable]] where the result type being accumulated is the same
 * as the types of elements being merged, i.e. variables that are only "added" to through an
 * associative and commutative operation and can therefore be efficiently supported in parallel.
 * They can be used to implement counters (as in MapReduce) or sums. Spark natively supports
 * accumulators of numeric value types, and programmers can add support for new types.
 *	1、累加器仅仅支持累加操作(added),目的是有效的支持并行
	2、他们可以用来进行计数和累加,spark天生支持数值类型的累加,同时程序员也可以自己定义类型
 * An accumulator is created from an initial value `v` by calling
 * [[SparkContext#accumulator SparkContext.accumulator]].
 * Tasks running on the cluster can then add to it using the [[Accumulable#+= +=]] operator.
 * However, they cannot read its value. Only the driver program can read the accumulator's value,
 * using its [[#value]] method.
 *
 * The interpreter session below shows an accumulator being used to add up the elements of an array:
 *
 * {{{
 * scala> val accum = sc.accumulator(0)
 * accum: org.apache.spark.Accumulator[Int] = 0
 *
 * scala> sc.parallelize(Array(1, 2, 3, 4)).foreach(x => accum += x)
 * ...
 * 10/09/29 18:41:08 INFO SparkContext: Tasks finished in 0.317106 s
 *
 * scala> accum.value
 * res2: Int = 10
 * }}}
 *
 * @param initialValue initial value of accumulator
 * @param param helper object defining how to add elements of type `T`
 * @param name human-readable name associated with this accumulator
 * @param countFailedValues whether to accumulate values from failed tasks
 * @tparam T result type
*/
@deprecated("use AccumulatorV2", "2.0.0")
class Accumulator[T] private[spark] (
    // SI-8813: This must explicitly be a private val, or else scala 2.11 doesn't compile
    @transient private val initialValue: T,
    param: AccumulatorParam[T],
    name: Option[String] = None,
    countFailedValues: Boolean = false)
  extends Accumulable[T, T](initialValue, param, name, countFailedValues)


/**
 * A simpler version of [[org.apache.spark.AccumulableParam]] where the only data type you can add
 * in is the same type as the accumulated value. An implicit AccumulatorParam object needs to be
 * available when you create Accumulators of a specific type.
 *
 * @tparam T type of value to accumulate
 */
@deprecated("use AccumulatorV2", "2.0.0")
trait AccumulatorParam[T] extends AccumulableParam[T, T] {
  def addAccumulator(t1: T, t2: T): T = {
    addInPlace(t1, t2)
  }
}


@deprecated("use AccumulatorV2", "2.0.0")
object AccumulatorParam {

  // The following implicit objects were in SparkContext before 1.2 and users had to
  // `import SparkContext._` to enable them. Now we move them here to make the compiler find
  // them automatically. However, as there are duplicate codes in SparkContext for backward
  // compatibility, please update them accordingly if you modify the following implicit objects.

  @deprecated("use AccumulatorV2", "2.0.0")
  implicit object DoubleAccumulatorParam extends AccumulatorParam[Double] {
    def addInPlace(t1: Double, t2: Double): Double = t1 + t2
    def zero(initialValue: Double): Double = 0.0
  }

  @deprecated("use AccumulatorV2", "2.0.0")
  implicit object IntAccumulatorParam extends AccumulatorParam[Int] {
    def addInPlace(t1: Int, t2: Int): Int = t1 + t2
    def zero(initialValue: Int): Int = 0
  }

  @deprecated("use AccumulatorV2", "2.0.0")
  implicit object LongAccumulatorParam extends AccumulatorParam[Long] {
    def addInPlace(t1: Long, t2: Long): Long = t1 + t2
    def zero(initialValue: Long): Long = 0L
  }

  @deprecated("use AccumulatorV2", "2.0.0")
  implicit object FloatAccumulatorParam extends AccumulatorParam[Float] {
    def addInPlace(t1: Float, t2: Float): Float = t1 + t2
    def zero(initialValue: Float): Float = 0f
  }

  // Note: when merging values, this param just adopts the newer value. This is used only
  // internally for things that shouldn't really be accumulated across tasks, like input
  // read method, which should be the same across all tasks in the same stage.
  @deprecated("use AccumulatorV2", "2.0.0")
  private[spark] object StringAccumulatorParam extends AccumulatorParam[String] {
    def addInPlace(t1: String, t2: String): String = t2
    def zero(initialValue: String): String = ""
  }
}
对其大概有个了解,我们再来看下面实验程序

import org.apache.spark.{SparkConf, SparkContext}

object broadCastTest {

  def main(args: Array[String]) {

    val conf = new SparkConf().setAppName("broadCastTest").setMaster("local")
    val sc = new SparkContext(conf)


    val RDD = sc.parallelize(List(1,2,3))

    //broadcast
    val broadValue1 = sc.broadcast(2)
    val data1 = RDD.map(x => x*broadValue1.value)
    data1.foreach(x => println("broadcast value:"+x))


    //accumulator
    var accumulator = sc.accumulator(2)
    //错误
    val RDD2 = sc.parallelize(List(1,1,1)).map{ x=>
      if(x<3){
        accumulator+=1
      }
      x*accumulator.value
    }//(x => x*accumulator.value)
    //此处还没有报错
    println(RDD2)
    //此处开始报错
    //RDD2.foreach(println)
    //  這里报错:Can't read accumulator value in task

    //這个操作没有报错
    RDD.foreach{x =>
      if(x<3){
        accumulator+=1
      }
    }
    println("accumulator is "+accumulator.value)
    // accumulator 说明了两点:
    //(1): 累加器只有在执行Action的时候,才被更新
    //(2):我们在task的时候不能读取它的值,只有驱动程序才可以读取它的值

    sc.stop()
  }

}

从Accumulator源码中可以看到,我们可以用AccumulatorParam接口实现自己的累加器
它有两个方法,
def addInPlace(t1: T, t2: T): T = t1 + t2
def zero(initialValue: T): T = 0.0
下面按照自己定义的类型,写一个

import org.apache.spark.{AccumulatorParam, SparkConf, SparkContext}

object listAccumulatorParam extends AccumulatorParam[List[Double]] {
    def zero(initialValue: List[Double]): List[Double] = {
      Nil
  }
  def addInPlace(v1: List[Double], v2: List[Double]): List[Double] = {
    v1:::v2
  }
}

object broadCastTest {


  def main(args: Array[String]) {

    val conf = new SparkConf().setAppName("broadCastTest").setMaster("local")
    val sc = new SparkContext(conf)

    val myAccumulator = sc.accumulator[List[Double]](List(0.1,0.2,0.3))(listAccumulatorParam)


    println("my accumulator is "+myAccumulator.value)
    //my accumulator is List(0.1, 0.2, 0.3)

    sc.stop()
  }

}
SparkStreaming中应用 Accumulators和Broadcast

通过对一些特有的字符串广播,然后进行过滤,比如我们可以把一些人的名字给过滤掉,也就是黑名单的过滤,如下实现过滤三个字符串 a,b,c.从下面的数据中每秒产生一个字母

a
b
c
d
e
f
g
h
i

过滤的SparkStreaming程序如下:

import org.apache.log4j.{Level, Logger}
import org.apache.spark.{Accumulator, SparkConf}
import org.apache.spark.broadcast.Broadcast
import org.apache.spark.streaming.{Seconds, StreamingContext}

object broadCastTest {
  @volatile private var broadcastValue: Broadcast[Seq[String]] = null
  @volatile private var accumulatorValue:Accumulator[Int] = null

  def main(args: Array[String]) {
    Logger.getLogger("org.apache.spark").setLevel(Level.ERROR)
    Logger.getLogger("org.eclipse.jetty.Server").setLevel(Level.OFF)
    val conf = new SparkConf().setAppName("broadCastTest").setMaster("local[2]")
    val ssc = new StreamingContext(conf, Seconds(2))

    broadcastValue = ssc.sparkContext.broadcast(Seq("a","b","c"))
    accumulatorValue = ssc.sparkContext.accumulator(0, "OnlineBlacklistCounter")

    val linesData = ssc.socketTextStream("master",9999)
    val wordCount = linesData.map(x =>(x,1)).reduceByKey(_+_)

 
    val counts = wordCount.filter{ case (word,count) =>
        if(broadcastValue.value.contains(word)){
          accumulatorValue += count
          //println("have blocked "+accumulatorValue+" times")
          false
        }else{
          //println("have blocked "+accumulatorValue+" times")
          true
        }
    }
    //println("broadcastValue:"+broadcastValue.value)
    counts.print()
    //wordCount.print()

    ssc.start()
    ssc.awaitTermination()


  }

}

得到的结果如下:












你可能感兴趣的:(源码,大数据,SparkStreaming)