Android 中的SparseArray

文章出处:http://blog.csdn.net/shift_wwx

请转载的朋友标明出处~~


前言:关于SparseArray 或者 相关的如SparseIntArray 网上相关的例子还是很多的,个人还是习惯性根据source code 总结一下。

总结版本基于4.4


一、SparseArray与HashMap

SparseArray是专门为Android提供了一种更加适合Android开发的数据结构,与HashMap比较效率会更高。初看之下,好像是一种数组,其实不然。数组的index是连续的。而SparseArray可以不连续,所以导致SparseArray就具有HashMap的一些特性,但是比HashMap的性能要好。

既然性能要好很多,那是不是所有可以用HashMap的地方都可以用SparseArray代替呢?也不尽然。SparseArray的value可以是任意类型,但它的key只能是Integer类型。如果key是Integer的话,用SparseArray还是很方便的,但是如果是string,那只能用HashMap了。

SparseArray 相关的还有SparseIntArray、SparseBooleanArray、LongSparseArray。下面都会做一下说明。


二、SparseArray

/**
 * SparseArrays map integers to Objects.  Unlike a normal array of Objects,
 * there can be gaps in the indices.  It is intended to be more memory efficient
 * than using a HashMap to map Integers to Objects, both because it avoids
 * auto-boxing keys and its data structure doesn't rely on an extra entry object
 * for each mapping.
 *
 * <p>Note that this container keeps its mappings in an array data structure,
 * using a binary search to find keys.  The implementation is not intended to be appropriate for
 * data structures
 * that may contain large numbers of items.  It is generally slower than a traditional
 * HashMap, since lookups require a binary search and adds and removes require inserting
 * and deleting entries in the array.  For containers holding up to hundreds of items,
 * the performance difference is not significant, less than 50%.</p>
 *
 * <p>To help with performance, the container includes an optimization when removing
 * keys: instead of compacting its array immediately, it leaves the removed entry marked
 * as deleted.  The entry can then be re-used for the same key, or compacted later in
 * a single garbage collection step of all removed entries.  This garbage collection will
 * need to be performed at any time the array needs to be grown or the the map size or
 * entry values are retrieved.</p>
 *
 * <p>It is possible to iterate over the items in this container using
 * {@link #keyAt(int)} and {@link #valueAt(int)}. Iterating over the keys using
 * <code>keyAt(int)</code> with ascending values of the index will return the
 * keys in ascending order, or the values corresponding to the keys in ascending
 * order in the case of <code>valueAt(int)</code>.</p>
 */
public class SparseArray<E> implements Cloneable {
    private static final Object DELETED = new Object();
    private boolean mGarbage = false;

    private int[] mKeys;
    private Object[] mValues;
    private int mSize;

    /**
     * Creates a new SparseArray containing no mappings.
     */
    public SparseArray() {
        this(10);
    }
从字面的意思来看SparseArray指的是稀疏数组。从注释来看,用SparseArray 来替代java中的HashMap在性能上有更好的提高,定义的空间在delete的时候并没有释放,而是做了标记保留了下来,方便后来重复使用,直到特殊调用时候gc出来。另外就是查找的方式用的是binary search(折半查找),这也是SparseArray 特殊之处,可以提高效率。


构造函数:

    public SparseArray() {
        this(10);
    }

    public SparseArray(int initialCapacity) {
        if (initialCapacity == 0) {
            mKeys = EmptyArray.INT;
            mValues = EmptyArray.OBJECT;
        } else {
            mValues = ArrayUtils.newUnpaddedObjectArray(initialCapacity);
            mKeys = new int[mValues.length];
        }
        mSize = 0;
    }
默认是10个,当然里面都是空的。也可以指定数组的最小个数。


查找:

    public E get(int key) {
        return get(key, null);
    }

    @SuppressWarnings("unchecked")
    public E get(int key, E valueIfKeyNotFound) {
        int i = ContainerHelpers.binarySearch(mKeys, mSize, key);

        if (i < 0 || mValues[i] == DELETED) {
            return valueIfKeyNotFound;
        } else {
            return (E) mValues[i];
        }
    }
不指定默认返回值的时候,返回的是null。

删除:

    public void delete(int key) {
        int i = ContainerHelpers.binarySearch(mKeys, mSize, key);

        if (i >= 0) {
            if (mValues[i] != DELETED) {
                mValues[i] = DELETED;
                mGarbage = true;
            }
        }
    }

    public void remove(int key) {
        delete(key);
    }

    public void removeAt(int index) {
        if (mValues[index] != DELETED) {
            mValues[index] = DELETED;
            mGarbage = true;
        }
    }

    public void removeAtRange(int index, int size) {
        final int end = Math.min(mSize, index + size);
        for (int i = index; i < end; i++) {
            removeAt(i);
        }
    }
删除方法提供了四个:

remove、delete是一个效果,参数都是key;

removeAt提供的却是value 的index;

removeAtRange删除的是一个范围,参数是value的index 和 偏移size;

注意:remove之后mGarbage都会被置为true,在适当的时候用于gc,gc完才能重置为false。


修改:

    public void put(int key, E value) {
        int i = ContainerHelpers.binarySearch(mKeys, mSize, key);

        if (i >= 0) {
            mValues[i] = value;
        } else {
            i = ~i;

            if (i < mSize && mValues[i] == DELETED) {
                mKeys[i] = key;
                mValues[i] = value;
                return;
            }

            if (mGarbage && mSize >= mKeys.length) {
                gc();

                // Search again because indices may have changed.
                i = ~ContainerHelpers.binarySearch(mKeys, mSize, key);
            }

            mKeys = GrowingArrayUtils.insert(mKeys, mSize, i, key);
            mValues = GrowingArrayUtils.insert(mValues, mSize, i, value);
            mSize++;
        }
    }
    
    public void setValueAt(int index, E value) {
        if (mGarbage) {
            gc();
        }

        mValues[index] = value;
    }
    
    public void append(int key, E value) {
        if (mSize != 0 && key <= mKeys[mSize - 1]) {
            put(key, value);
            return;
        }

        if (mGarbage && mSize >= mKeys.length) {
            gc();
        }

        mKeys = GrowingArrayUtils.append(mKeys, mSize, key);
        mValues = GrowingArrayUtils.append(mValues, mSize, value);
        mSize++;
    }
修改提供了三个函数:

1)put 分为三种情况,一是数组已经有了,那就直接替换;二是数组中 value 之前被delete了,那就直接赋值;三是数组压根没出现过,用的是insert方式。

虽然这里insert可能影响到了效率,但是相对于binary search还是可以忽略的。

2)setValueAt 参数是values的index 和 value,个人感觉这里存在个漏洞,需要判断index 的存在性的。

3)append 参数换成了key 和 value,如果key 小于mKeys 最大的值,采用的是insert 方式,否则就用append在最后添加了。


SparseArray差不多的接口已经说的差不多了,来看一下几个核心的接口:

1、int i = ContainerHelpers.binarySearch(mKeys, mSize, key);

    static int binarySearch(int[] array, int size, int value) {
        int lo = 0;
        int hi = size - 1;

        while (lo <= hi) {
            final int mid = (lo + hi) >>> 1;//除以2,无符号右移1位
            final int midVal = array[mid];

            if (midVal < value) {
                lo = mid + 1;
            } else if (midVal > value) {
                hi = mid - 1;
            } else {
                return mid;  // value found
            }
        }
        return ~lo;  // value not present
    }
在找不到的时候,返回的却是 ~lo,不是0也不是-1。

2、mKeys = GrowingArrayUtils.insert(mKeys, mSize, i, key);

    public static <T> T[] insert(T[] array, int currentSize, int index, T element) {
        assert currentSize <= array.length;

        if (currentSize + 1 <= array.length) {
            System.arraycopy(array, index, array, index + 1, currentSize - index);
            array[index] = element;
            return array;
        }

        @SuppressWarnings("unchecked")
        T[] newArray = ArrayUtils.newUnpaddedArray((Class<T>)array.getClass().getComponentType(),
                growSize(currentSize));
        System.arraycopy(array, 0, newArray, 0, index);
        newArray[index] = element;
        System.arraycopy(array, index, newArray, index + 1, array.length - index);
        return newArray;
    }
用的是System.arraycopy这里就不多解释了。


三、SparseIntArray

与SparseArray差不多,几个接口有点诧异。

1、构造函数

    public SparseIntArray(int initialCapacity) {
        if (initialCapacity == 0) {
            mKeys = EmptyArray.INT;
            mValues = EmptyArray.INT;
        } else {
            mKeys = ArrayUtils.newUnpaddedIntArray(initialCapacity);
            mValues = new int[mKeys.length];
        }
        mSize = 0;
    }
SparseArray 是new 的mValues:

mValues = ArrayUtils.newUnpaddedObjectArray(initialCapacity);
mKeys = new int[mValues.length];
2、delete

    public void delete(int key) {
        int i = ContainerHelpers.binarySearch(mKeys, mSize, key);

        if (i >= 0) {
            removeAt(i);
        }
    }

    public void removeAt(int index) {
        System.arraycopy(mKeys, index + 1, mKeys, index, mSize - (index + 1));
        System.arraycopy(mValues, index + 1, mValues, index, mSize - (index + 1));
        mSize--;
    }
直接删掉了,没有保留一说

3、没有了remove、removeAtRange、setValueAt等接口


四、SparseBooleanArray

与前面两个差不多,value是boolean 型

1、构造函数

    public SparseBooleanArray(int initialCapacity) {
        if (initialCapacity == 0) {
            mKeys = EmptyArray.INT;
            mValues = EmptyArray.BOOLEAN;
        } else {
            mKeys = ArrayUtils.newUnpaddedIntArray(initialCapacity);
            mValues = new boolean[mKeys.length];
        }
        mSize = 0;
    }
2、delete

    public void delete(int key) {
        int i = ContainerHelpers.binarySearch(mKeys, mSize, key);

        if (i >= 0) {
            System.arraycopy(mKeys, i + 1, mKeys, i, mSize - (i + 1));
            System.arraycopy(mValues, i + 1, mValues, i, mSize - (i + 1));
            mSize--;
        }
    }

    /** @hide */
    public void removeAt(int index) {
        System.arraycopy(mKeys, index + 1, mKeys, index, mSize - (index + 1));
        System.arraycopy(mValues, index + 1, mValues, index, mSize - (index + 1));
        mSize--;
    }
其实完全可以跟SparseIntArray 一样,直接调用removeAt。

3、没有了remove、removeAtRange等接口,与SparseIntArray 比较多了setValueAt借口


五、LongSparseArray

public class LongSparseArray<E> implements Cloneable {
个人感觉这个就是从SparseArray copy过来的接口,这里为什么要需要E?




你可能感兴趣的:(android,HashMap,SparseArray,SparseIntArray)