本人原创,转载请注明出处! 本人QQ:530422429,欢迎大家指正、讨论。
1. 由前文知道每个BSPServiceWorker有一个WorkerServer对象,WorkerServer对象里面又有ServerData对象,作为数据实体。ServerData中包含该Worker的partitionStore、edgeStore、incomingMessageStore、currentMessageStore、聚集值等。
其中incomingMessageStore对象为MessageStoreByPartition(接口)类型,也就是说消息时按照分区来存储的。MessageStoreByPartition接口的关系图如下:
如果用户的程序使用Combiner, incomingMessageStore对象实际为OneMessagePerVertexStore ;否则incomingMessageStore对象为ByteArrayMessagesPerVertexStore类型。
下面先分析ByteArrayMessagesPerVertexStore类型。对同一个vertex的multiple消息存储为一个byte arrays。
在SimpleMessageStore抽象类中,有一个ConcurrentMap<Integer,ConcurrentMap<I,T>>类型的变量map,用来存储消息。第一层是pairtitionID到发送到该partition消息的映射;第二层是VertexID 到发送给该Vertex的消息队列。下图参考《Giraph通信模块分析》:http://my.oschina.net/skyaugust/blog/95182 。在此表示感谢!
每个顶点的消息列表具体为ExtendedDataOutput类型,它继承DataOutput接口,增加了几个方法而已。每个消息是以字节形式写入到ExtendedDataOutput对象中的。
2. 发送消息时,采用异步式通信。图顶点的计算处理与消息通信并发执行,在计算过程中就可以发送消息,将大规模消息发送分散在不同的时间段,避免瞬时网络通信阻塞,但是接受端需要额外的空间,存储临时接收到的消息,相当于空间换时间。而集中式通信,图顶点的计算处理与消息通信串行进行,在计算完毕后,统一发送消息,控制和实现方式简单,可在发送端对消息进行最大程度优化,但容易造成瞬时间的网络通信阻塞以及增加发送端的消息存储开销。
不同Worker间的消息通信使用RPC方式,具体为Netty。同一Worker内,连续两次迭代的消息直接通过内存操作,把要发送的消息直接复制到Worker的incomingMessageStore中。下面详述消息的存储格式和发送机制。
3. Giraph使用Cache来缓存消息,当消息达到一定阈值后,一次性发送。既按照bulk模式进行,不会一条一条信息发送。向某个顶点发送的消息是按照<destVertexId,Message> pair存储在ByteArrayVertexIdData<I,T>中(实际为ByteArrayVertexIdMessages<I,M>类型)。介绍如下: org.apache.giraph.utils.ByteArrayVertexIdData<I,T>
功能:把<顶点ID,data> Pair 存储在一个 byte数组中。里面有 ExtendedDataOutput对象用来存储数据。
该类中还有一个内部类:VertexIdDataIterator,该内部类继承 VertexIdIterator类。
org.apache.giraph.comm.SendCache用来缓存发送的信息,然后以“Bulk”模式发送。在Giraph中,每个Worker上可以对应多个分区。消息缓存的阈值是以Worker为单位计算,而不是Partition。
SendCache中有ByteArrayVertexIdData<I,T>[ ] dataCache数组用来存储发送给每个Partition的消息;有int[ ] dataSizes数组用于记录向每个Worker发送的消息大小,若大于MAX_MSG_REQUEST_SIZE(默认为512KB)就把此Worker上的所有Partition缓存的消息发送到给该Worker,同一Worker内消息也是如此缓存;有int[ ] initBufferSizes数组用于记录每个Worker上的每个Partition的初始化ByteArrayVertexIdData中ExtendedDataOutput对象的大小,同一Worker上的所有Partition初始值相同,该值为平均值。记MAX_MSG_REQUEST_SIZE(message request size)值为M, 该Worker上有P个 partitions,ADDTITIONNAL_MSG_REQUEST_SIZE(比平均值大的因子)默认为0.2f,记为A。则每个Partition的初始大小为:M*(1+A) / P .
由前文知道,每个Worker都有一个NettyWorkerClientRequestProcessor<I,V,E,M>用来发送消息。该类中有SendMessageCache对象用来缓存向外发送的信息。NettyWorkerClientRequestProcessor类中的sendMessageRequest(I,M)
方法如下,用于向某个顶点destVertexId发送消息message。
@Override public boolean sendMessageRequest(I destVertexId, M message) { PartitionOwner owner = serviceWorker.getVertexPartitionOwner(destVertexId); WorkerInfo workerInfo = owner.getWorkerInfo(); final int partitionId = owner.getPartitionId(); ++totalMsgsSentInSuperstep; // Add the message to the cache int workerMessageSize = sendMessageCache.addMessage( workerInfo, partitionId, destVertexId, message); // Send a request if the cache of outgoing message to // the remote worker 'workerInfo' is full enough to be flushed if (workerMessageSize >= maxMessagesSizePerWorker) { PairList<Integer, ByteArrayVertexIdMessages<I, M>> workerMessages = sendMessageCache.removeWorkerMessages(workerInfo); WritableRequest writableRequest = new SendWorkerMessagesRequest<I, M>(workerMessages); doRequest(workerInfo, writableRequest); return true; } return false; }方法解释:首先根据destVertexId得到对应的partitionId和WorkerInfo,然后把消息add到SendMessageCache中,并返回向该顶点所属Worker发送的消息大小workerMessageSize。若该值大于默认值512KB,则把此Worker对应的所有Partition消息从 SendMessageCache中删除,把删除的消息赋值给workerMessages,其类型为PairList<Integer,ByteArrayVertexIdMessages<I,M>> ,key为partitionId,value为发送给该partition的消息列表,最后调用doRequest()方法发送信息。doRequest()方法如下:
private void doRequest(WorkerInfo workerInfo, WritableRequest writableRequest) { // If this is local, execute locally if (serviceWorker.getWorkerInfo().getTaskId() == workerInfo.getTaskId()) { ((WorkerRequest) writableRequest).doRequest(serverData); localRequests.inc(); } else { workerClient.sendWritableRequest( workerInfo.getTaskId(), writableRequest); remoteRequests.inc(); } }可以看到在发送消息时,先判断是否在同一Worker上。如果是的话,调用SendWorkerMessagesRequest<T,M>的doRequest发送消息;否则使用WorkerClient(底层使用Netty)进行消息发送。下面着重讨论同一Worker内的机制。
org.apache.giraph.comm.requests.SendWorkerMessagesRequest类中的doRequest方法如下:
@Override public void doRequest(ServerData serverData) { PairList<Integer, ByteArrayVertexIdMessages<I, M>>.Iterator iterator = partitionVertexData.getIterator(); while (iterator.hasNext()) { iterator.next(); try { serverData.getIncomingMessageStore(). addPartitionMessages(iterator.getCurrentFirst(), iterator.getCurrentSecond()); } catch (IOException e) { throw new RuntimeException("doRequest: Got IOException ", e); } } }参数为该Worker的ServerData,代码中的partitionVertexData实际为 PairList<Integer,ByteArrayVertexIdMessages<I,M>>workerMessages。 遍历<partitionID,对应的消息列表>来添加到ServerData中的 incomingMessageStore中。
ByteArrayMessagesPerVertexStore类中的addPartitionMessages()方法如下:
@Override public void addPartitionMessages( int partitionId, ByteArrayVertexIdMessages<I, M> messages) throws IOException { ConcurrentMap<I, ExtendedDataOutput> partitionMap = getOrCreatePartitionMap(partitionId); …… ByteArrayVertexIdMessages<I, M>.VertexIdMessageIterator vertexIdMessageIterator = messages.getVertexIdMessageIterator(); // 遍历<destVertexId,Msg> Pair while (vertexIdMessageIterator.hasNext()) { vertexIdMessageIterator.next(); // 找到顶点对应的队列,不存在则新建 ExtendedDataOutput extendedDataOutput = getExtendedDataOutput(partitionMap, vertexIdMessageIterator); synchronized (extendedDataOutput) { // 把Msg添加到队列中 vertexIdMessageIterator.getCurrentMessage().write( extendedDataOutput); } } }4. 当用户使用了Combiner, incomingMessageStore对应的类型则为OneMessagePerVertexStore,该类为每个顶点只存储一个消息,而非消息队列。结构如下图:
当添加一条消息时,会把顶点已对应的消息和要添加的消息调用combine()方法进行合并,然后存储在上述结构图中。addPartitionMessages()方法如下:
@Override public void addPartitionMessages( int partitionId, ByteArrayVertexIdMessages<I, M> messages) throws IOException { ConcurrentMap<I, M> partitionMap = getOrCreatePartitionMap(partitionId); ByteArrayVertexIdMessages<I, M>.VertexIdMessageIterator vertexIdMessageIterator = messages.getVertexIdMessageIterator(); // This loop is a little complicated as it is optimized to only create // the minimal amount of vertex id and message objects as possible. //遍历<destVertexID,Msg> Pair while (vertexIdMessageIterator.hasNext()) { vertexIdMessageIterator.next(); I vertexId = vertexIdMessageIterator.getCurrentVertexId(); M currentMessage = partitionMap.get(vertexIdMessageIterator.getCurrentVertexId()); if (currentMessage == null) { M newMessage = combiner.createInitialMessage(); currentMessage = partitionMap.putIfAbsent( vertexIdMessageIterator.releaseCurrentVertexId(), newMessage); if (currentMessage == null) { currentMessage = newMessage; } } synchronized (currentMessage) { // 调用combine()方法进行合并,并赋值给currentMessage combiner.combine(vertexId, currentMessage, vertexIdMessageIterator.getCurrentMessage()); } } }5. 在ComputeCallable中的call()方法调用computePartition(Partition)计算完所有Partition上的顶点后,调用WorkerClientRequestProcessor.flush()方法把所有剩余的消息发送出去。
@Override public void flush() throws IOException { …… // Execute the remaining sends messages (if any) PairList<WorkerInfo, PairList<Integer, ByteArrayVertexIdMessages<I, M>>> remainingMessageCache = sendMessageCache.removeAllMessages(); PairList<WorkerInfo, PairList<Integer, ByteArrayVertexIdMessages<I, M>>>.Iterator iterator = remainingMessageCache.getIterator(); while (iterator.hasNext()) { iterator.next(); WritableRequest writableRequest = new SendWorkerMessagesRequest<I, M>( iterator.getCurrentSecond()); doRequest(iterator.getCurrentFirst(), writableRequest); } …… }