TFIDF算法java实现(TF/IDF选取高频词)

一、算法简介

        TF-IDF(term frequency–inverse document frequency)。

        TFIDF的主要思想是:如果某个词或短语在一篇文章中出现的频率TF高,并且在其他文章中很少出现,则认为此词或者短语具有很好的类别区分能力,适合用来分类。TFIDF实际上是:TF*IDF,TF词频(Term Frequency),IDF反文档频率(Inverse Document Frequency)。TF表示词条t在文档d中出现的频率。IDF的主要思想是:如果包含词条t的文档越少,IDF越大,则说明词条t具有很好的类别区分能力。

二、算法实现

1》主要文件

package tfidf;

import java.io.BufferedReader;
import java.io.File;
import java.io.FileInputStream;
import java.io.FileNotFoundException;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.UnsupportedEncodingException;
import java.util.ArrayList;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
import jeasy.analysis.MMAnalyzer;

public class ReadFiles {

    private static List<String> fileList = new ArrayList<String>();
    private static HashMap<String, HashMap<String, Float>> allTheTf = new HashMap<String, HashMap<String, Float>>();
    private static HashMap<String, HashMap<String, Integer>> allTheNormalTF = new HashMap<String, HashMap<String, Integer>>();

    public static List<String> readDirs(String filepath) throws FileNotFoundException, IOException {
        try {
            File file = new File(filepath);
            if (!file.isDirectory()) {
                System.out.println("输入的参数应该为[文件夹名]");
                System.out.println("filepath: " + file.getAbsolutePath());
            } else if (file.isDirectory()) {
                String[] filelist = file.list();
                for (int i = 0; i < filelist.length; i++) {
                    File readfile = new File(filepath + "\\" + filelist[i]);
                    if (!readfile.isDirectory()) {
                        //System.out.println("filepath: " + readfile.getAbsolutePath());
                        fileList.add(readfile.getAbsolutePath());
                    } else if (readfile.isDirectory()) {
                        readDirs(filepath + "\\" + filelist[i]);
                    }
                }
            }

        } catch (FileNotFoundException e) {
            System.out.println(e.getMessage());
        }
        return fileList;
    }

    public static String readFiles(String file) throws FileNotFoundException, IOException {
        StringBuffer sb = new StringBuffer();
        InputStreamReader is = new InputStreamReader(new FileInputStream(file), "gbk");
        BufferedReader br = new BufferedReader(is);
        String line = br.readLine();
        while (line != null) {
            sb.append(line).append("\r\n");
            line = br.readLine();
        }
        br.close();
        return sb.toString();
    }

    public static String[] cutWord(String file) throws IOException {
        String[] cutWordResult = null;
        String text = ReadFiles.readFiles(file);
        MMAnalyzer analyzer = new MMAnalyzer();
        //System.out.println("file content: "+text);
        //System.out.println("cutWordResult: "+analyzer.segment(text, " "));
        String tempCutWordResult = analyzer.segment(text, " ");
        cutWordResult = tempCutWordResult.split(" ");
        return cutWordResult;
    }

    public static HashMap<String, Float> tf(String[] cutWordResult) {
        HashMap<String, Float> tf = new HashMap<String, Float>();//正规化
        int wordNum = cutWordResult.length;
        int wordtf = 0;
        for (int i = 0; i < wordNum; i++) {
            wordtf = 0;
            for (int j = 0; j < wordNum; j++) {
                if (cutWordResult[i] != " " && i != j) {
                    if (cutWordResult[i].equals(cutWordResult[j])) {
                        cutWordResult[j] = " ";
                        wordtf++;
                    }
                }
            }
            if (cutWordResult[i] != " ") {
                tf.put(cutWordResult[i], (new Float(++wordtf)) / wordNum);
                cutWordResult[i] = " ";
            }
        }
        return tf;
    }

    public static HashMap<String, Integer> normalTF(String[] cutWordResult) {
        HashMap<String, Integer> tfNormal = new HashMap<String, Integer>();//没有正规化
        int wordNum = cutWordResult.length;
        int wordtf = 0;
        for (int i = 0; i < wordNum; i++) {
            wordtf = 0;
            if (cutWordResult[i] != " ") {
                for (int j = 0; j < wordNum; j++) {
                    if (i != j) {
                        if (cutWordResult[i].equals(cutWordResult[j])) {
                            cutWordResult[j] = " ";
                            wordtf++;

                        }
                    }
                }
                tfNormal.put(cutWordResult[i], ++wordtf);
                cutWordResult[i] = " ";
            }
        }
        return tfNormal;
    }

    public static Map<String, HashMap<String, Float>> tfOfAll(String dir) throws IOException {
        List<String> fileList = ReadFiles.readDirs(dir);
        for (String file : fileList) {
            HashMap<String, Float> dict = new HashMap<String, Float>();
            dict = ReadFiles.tf(ReadFiles.cutWord(file));
            allTheTf.put(file, dict);
        }
        return allTheTf;
    }

    public static Map<String, HashMap<String, Integer>> NormalTFOfAll(String dir) throws IOException {
        List<String> fileList = ReadFiles.readDirs(dir);
        for (int i = 0; i < fileList.size(); i++) {
            HashMap<String, Integer> dict = new HashMap<String, Integer>();
            dict = ReadFiles.normalTF(ReadFiles.cutWord(fileList.get(i)));
            allTheNormalTF.put(fileList.get(i), dict);
        }
        return allTheNormalTF;
    }

    public static Map<String, Float> idf(String dir) throws FileNotFoundException, UnsupportedEncodingException, IOException {
        //公式IDF=log((1+|D|)/|Dt|),其中|D|表示文档总数,|Dt|表示包含关键词t的文档数量。
        Map<String, Float> idf = new HashMap<String, Float>();
        List<String> located = new ArrayList<String>();

        float Dt = 1;
        float D = allTheNormalTF.size();//文档总数
        List<String> key = fileList;//存储各个文档名的List
        Map<String, HashMap<String, Integer>> tfInIdf = allTheNormalTF;//存储各个文档tf的Map

        for (int i = 0; i < D; i++) {
            HashMap<String, Integer> temp = tfInIdf.get(key.get(i));
            for (String word : temp.keySet()) {
                Dt = 1;
                if (!(located.contains(word))) {
                    for (int k = 0; k < D; k++) {
                        if (k != i) {
                            HashMap<String, Integer> temp2 = tfInIdf.get(key.get(k));
                            if (temp2.keySet().contains(word)) {
                                located.add(word);
                                Dt = Dt + 1;
                                continue;
                            }
                        }
                    }
                    idf.put(word, Log.log((1 + D) / Dt, 10));
                }
            }
        }
        return idf;
    }

    public static Map<String, HashMap<String, Float>> tfidf(String dir) throws IOException {

        Map<String, Float> idf = ReadFiles.idf(dir);
        Map<String, HashMap<String, Float>> tf = ReadFiles.tfOfAll(dir);

        for (String file : tf.keySet()) {
            Map<String, Float> singelFile = tf.get(file);
            for (String word : singelFile.keySet()) {
                singelFile.put(word, (idf.get(word)) * singelFile.get(word));
            }
        }
        return tf;
    }
}

2》辅助工具类

package tfidf;

public class Log {

    public static float log(float value, float base) {
        return (float) (Math.log(value) / Math.log(base));
    }
}
3》测试类

package tfidf;

import java.io.IOException;
import java.util.HashMap;
import java.util.Map;

public class Main {

    public static void main(String[] args) throws IOException {

        Map<String, HashMap<String, Integer>> normal = ReadFiles.NormalTFOfAll("d:/dir");
        for (String filename : normal.keySet()) {
            System.out.println("fileName " + filename);
            System.out.println("TF " + normal.get(filename).toString());
        }

        System.out.println("-----------------------------------------");

        Map<String, HashMap<String, Float>> notNarmal = ReadFiles.tfOfAll("d:/dir");
        for (String filename : notNarmal.keySet()) {
            System.out.println("fileName " + filename);
            System.out.println("TF " + notNarmal.get(filename).toString());
        }

        System.out.println("-----------------------------------------");

        Map<String, Float> idf = ReadFiles.idf("d;/dir");
        for (String word : idf.keySet()) {
            System.out.println("keyword :" + word + " idf: " + idf.get(word));
        }

        System.out.println("-----------------------------------------");

        Map<String, HashMap<String, Float>> tfidf = ReadFiles.tfidf("d:/dir");
        for (String filename : tfidf.keySet()) {
            System.out.println("fileName " + filename);
            System.out.println(tfidf.get(filename));
        }
    }
}

三、实验数据

TFIDF算法java实现(TF/IDF选取高频词)_第1张图片

四、实验结果

五、项目所需依赖

TFIDF算法java实现(TF/IDF选取高频词)_第2张图片

jar包下载地址:http://lvxiaolin1118.download.csdn.net/
注意jar包的版本,否则出现以下问题,请跟换如图版本的jar包。
六、常见疑问截图
1》没有加入lucene jar包


 2》加入的lucene jar包版本与je分词jar包不对应

TFIDF算法java实现(TF/IDF选取高频词)_第3张图片

 3》我自己又重新跑了一遍程序,正确的输入结果如下

TFIDF算法java实现(TF/IDF选取高频词)_第4张图片

你可能感兴趣的:(算法,TFIDF,词库整理算法,TFIDF算法实现)