题目如下:
If a machine can save only 3 significant digits, the float numbers 12300 and 12358.9 are considered equal since they are both saved as 0.123*105 with simple chopping. Now given the number of significant digits on a machine and two float numbers, you are supposed to tell if they are treated equal in that machine.
Input Specification:
Each input file contains one test case which gives three numbers N, A and B, where N (<100) is the number of significant digits, and A and B are the two float numbers to be compared. Each float number is non-negative, no greater than 10100, and that its total digit number is less than 100.
Output Specification:
For each test case, print in a line "YES" if the two numbers are treated equal, and then the number in the standard form "0.d1...dN*10^k" (d1>0 unless the number is 0); or "NO" if they are not treated equal, and then the two numbers in their standard form. All the terms must be separated by a space, with no extra space at the end of a line.
Note: Simple chopping is assumed without rounding.
Sample Input 1:3 12300 12358.9Sample Output 1:
YES 0.123*10^5Sample Input 2:
3 120 128Sample Output 2:
NO 0.120*10^3 0.128*10^3
这个题目的难点在于要处理的数不一定都是大于1的,还可能出现0.015这样的数字,我之前的代码只能处理大于1的情况,后来参考了小5555的代码,发现可以用两个游标指示小数点和第一个非0数的位置,然后判断二者的位置关系来判断数的值。
首先定义一个结构体,来存储基数和次方:
struct result{ char d[MAX]; // 0.xxx部分 int k; // 10的k次方 };
遍历时定义firstPos记录第一个非0数,pointPos记录小数点位置。
需要注意以下问题:
①题目的case似乎出现了00123.45这种坑爹的情况,因此要处理无效的0,也就说开头出现的0是不能要的,只有碰到第一个非0才记录firstPos。
②对于题目给定的精度,如果输入的数字位数不够,要补0,在结尾处还要补\0使得字符串可靠结束。
③处理完毕后,对于firstPos和pointPos做比较,如果前者小,说明是大于1的数,pointPos - firstPos即为10的几次方;如果后者小,说明是小数,应该用firstPos - pointPos + 1,+1是因为firstPos越过了小数点,而小数点不能算作一位,注意的是这个次方是负值。
④比较相等时,如果基数部分一致、次方也一致,才算相等。
代码如下:
#include <stdio.h> #include <string.h> #define MAX 110 struct result{ char d[MAX]; // 0.xxx部分 int k; // 10的k次方 }; result getResult(char *a, int n){ result r; int firstPos = -1; int pointPos = -1; int index = 0; int i; for (i = 0; a[i]; i++){ if (a[i] == '.'){ pointPos = i; continue; } else if (a[i] == '0' && firstPos == -1) // 不能以0开头,否则忽略 continue; else{ if (firstPos == -1) firstPos = i; // 第一个非0数字的位置 if (index < n) { if (index < strlen(a)) r.d[index++] = a[i]; // 对于特定的精度,有数字则填入相应数字,没有则补0 else r.d[index++] = '0'; } } } r.d[index] = 0; // 在数字结尾加\0,防止越界 if (pointPos == -1) pointPos = i; // 如果没有找到小数点,则小数点在最后,这是个纯整数 if (pointPos - firstPos < 0) // 判断小数点与第一个非0数字的位置关系,计算10的几次方 r.k = - (firstPos - pointPos - 1); // 负次方,例如0.015,pointPos = 1, firstPos = 3, 3 - 1 - 1 = 1, -1是因为多算了小数点进去,0.15*10^-1 else r.k = pointPos - firstPos; // 正次方,例如21.25,pointPos = 2,firstPos = 0,2-0=2,0.2125*10^2 if (index == 0){ // 如果index = 0,代表值为0,则每一位都写0,再加\0 int i; for (i = 0; i != n; i++) r.d[i] = '0'; r.d[i] = 0; r.k = 0; } return r; } int main(){ int n; char a[MAX], b[MAX]; scanf("%d%s%s", &n, a, b); result r1 = getResult(a, n); result r2 = getResult(b, n); if (strcmp(r1.d, r2.d) == 0 && r1.k == r2.k) printf("YES 0.%s*10^%d\n", r1.d, r1.k); else printf("NO 0.%s*10^%d 0.%s*10^%d\n", r1.d, r1.k, r2.d, r2.k); return 0; }