BM算法定义了两个规则:
下面举例说明BM算法。例如,给定文本串“HERE IS A SIMPLE EXAMPLE”,和模式串“EXAMPLE”,现要查找模式串是否在文本串中,如果存在,返回模式串在文本串中的位置。
1. 首先,"文本串"与"模式串"头部对齐,从尾部开始比较。"S"与"E"不匹配。这时,"S"就被称为"坏字符"(bad character),即不匹配的字符,它对应着模式串的第6位。且"S"不包含在模式串"EXAMPLE"之中(相当于最右出现位置是-1),这意味着可以把模式串后移6-(-1)=7位,从而直接移到"S"的后一位。
2. 依然从尾部开始比较,发现"P"与"E"不匹配,所以"P"是"坏字符"。但是,"P"包含在模式串"EXAMPLE"之中。因为“P”这个“坏字符”对应着模式串的第6位(从0开始编号),且在模式串中的最右出现位置为4,所以,将模式串后移6-4=2位,两个"P"对齐。
3. 依次比较,得到 “MPLE”匹配,称为"好后缀"(good suffix),即所有尾部匹配的字符串。注意,"MPLE"、"PLE"、"LE"、"E"都是好后缀。
4. 发现“I”与“A”不匹配:“I”是坏字符。如果是根据坏字符规则,此时模式串应该后移2-(-1)=3位。问题是,有没有更优的移法?
5. 更优的移法是利用好后缀规则:当字符失配时,后移位数 = 好后缀在模式串中的位置 - 好后缀在模式串中上一次出现的位置,且如果好后缀在模式串中没有再次出现,则为-1。
6. 继续从尾部开始比较,“P”与“E”不匹配,因此“P”是“坏字符”,根据“坏字符规则”,后移 6 - 4 = 2位。因为是最后一位就失配,尚未获得好后缀。
由上可知,BM算法不仅效率高,而且构思巧妙,容易理解。