- 计算机网络八股总结
Petrichorzncu
八股总结计算机网络笔记
这里写目录标题网络模型划分(五层和七层)及每一层的功能五层网络模型七层网络模型(OSI模型)==三次握手和四次挥手具体过程及原因==三次握手四次挥手TCP/IP协议组成==UDP协议与TCP/IP协议的区别==Http协议相关知识网络地址,子网掩码等相关计算网络模型划分(五层和七层)及每一层的功能五层网络模型应用层:负责处理网络应用程序,如电子邮件、文件传输和网页浏览。主要协议包括HTTP、FTP
- 每天五分钟玩转深度学习PyTorch:模型参数优化器torch.optim
幻风_huanfeng
深度学习框架pytorch深度学习pytorch人工智能神经网络机器学习优化算法
本文重点在机器学习或者深度学习中,我们需要通过修改参数使得损失函数最小化(或最大化),优化算法就是一种调整模型参数更新的策略。在pytorch中定义了优化器optim,我们可以使用它调用封装好的优化算法,然后传递给它神经网络模型参数,就可以对模型进行优化。本文是学习第6步(优化器),参考链接pytorch的学习路线随机梯度下降算法在深度学习和机器学习中,梯度下降算法是最常用的参数更新方法,它的公式
- TextCNN:文本卷积神经网络模型
一只天蝎
编程语言---Pythoncnn深度学习机器学习
目录什么是TextCNN定义TextCNN类初始化一个model实例输出model什么是TextCNNTextCNN(TextConvolutionalNeuralNetwork)是一种用于处理文本数据的卷积神经网(CNN)。通过在文本数据上应用卷积操作来提取局部特征,这些特征可以捕捉到文本中的局部模式,如n-gram(连续的n个单词或字符)。定义TextCNN类importtorch.nnasn
- ok虚拟化
qq_25467441
网络
核心S12700E汇聚S6730-H接入S5731-H在云数据中心中,虚拟机迁移时必须保持IP地址不变,并确保TCP连接不中断。因此,虚拟机的动态迁移只能在同一二层网络内进行,无法跨越二层网络。这一需求促使数据中心的网络架构发生了重大变革,东西向流量逐渐超过南北向流量,推动了扁平化的大二层网络模型的发展。由于虚拟机迁移依赖二层网络,传统的三层架构(接入层、汇聚层、核心层)逐渐失去其适用性。传统架构
- 每天五分钟玩转深度学习框架PyTorch:获取神经网络模型的参数
幻风_huanfeng
深度学习框架pytorch深度学习pytorch神经网络人工智能模型参数python
本文重点当我们定义好神经网络之后,这个网络是由多个网络层构成的,每层都有参数,我们如何才能获取到这些参数呢?我们将再下面介绍几个方法来获取神经网络的模型参数,此文我们是为了学习第6步(优化器)。获取所有参数Parametersfromtorchimportnnnet=nn.Sequential(nn.Linear(4,2),nn.Linear(2,2))print(list(net.paramet
- 机器学习和深度学习的区别
不会代码的小林
机器学习
机器学习和深度学习在多个方面存在显著的区别,以下是对这些区别的详细阐述:一、定义与起源机器学习:是人工智能的一个分支领域,它使计算机能够从数据中学习并改进其性能,而无需进行显式编程。机器学习起源于20世纪50年代,随着算法和计算能力的不断发展而逐渐成熟。深度学习:则是机器学习的一个子领域,它利用深度神经网络模型进行学习和预测。深度学习在21世纪初开始兴起,特别是随着大数据的普及和计算能力的显著提升
- Python高层神经网络 API库之Keras使用详解
Rocky006
pythonkeras开发语言
概要随着深度学习在各个领域的广泛应用,许多开发者开始使用各种框架来构建和训练神经网络模型。Keras是一个高层神经网络API,使用Python编写,并能够运行在TensorFlow、CNTK和Theano之上。Keras旨在简化深度学习模型的构建过程,使得开发者能够更加专注于实验和研究。本文将详细介绍Keras库,包括其安装方法、主要特性、基本和高级功能,以及实际应用场景,帮助全面了解并掌握该库的
- 基于Pytorch框架的CIFAR-10图像分类任务(附带完整代码)
难得北窗高卧
pytorch人工智能python深度学习
本文主要实现在pytorch框架下,训练CIFAR数据集,通过观察训练和验证的误差、准确率图像来进一步改善。保存最好的模型。测试集打印整体准确率和每一类别的准确率,并生成混淆矩阵,将其中每一个错误的图片并保存下来。语言:python实现方式:pytorch框架,CPU关键词:CIFAR-10数据集、Dataset和Dataloader、SummaryWriter画图、网络模型搭建、混淆矩阵、统计所
- 微积分在神经架构搜索中的应用
光剑书架上的书
深度强化学习原理与实战元学习原理与实战计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
微积分在神经架构搜索中的应用1.背景介绍随着深度学习技术的飞速发展,神经网络模型的复杂度也在不断提高,从最初的简单全连接网络,到如今的卷积神经网络、循环神经网络、注意力机制等各种复杂的神经网络架构。这些先进的神经网络架构大大提高了深度学习模型的性能,但同时也给神经网络的设计和调优带来了巨大的挑战。手工设计神经网络架构通常需要大量的专业知识和经验积累,过程繁琐复杂,难以推广。为了解决这一问题,神经架
- 深度解析:从概念到变革——Transformer大模型的前世今生以及大模型预备知识讲解[知存科技]
汀、人工智能
LLM技术汇总transformer深度学习人工智能自然语言处理LLMattention机制编码器解码器
深度解析:从概念到变革——Transformer大模型的前世今生点击:知存科技相关课程推荐知存科技是全球领先的存内计算芯片企业。针对AI应用场景,在全球率先商业化量产基于存内计算技术的神经网络芯片。凭借颠覆性的技术创新,知存科技突破传统计算架构局限,利用存储与计算的物理融合大幅减少数据搬运,在相同工艺条件下将AI计算效率提升2个数量级,充分满足快速发展的神经网络模型指数级增长的算力需求。相关链接推
- 亚马逊云科技大语言模型加速OCR应用场景发展
热爱coding的星辰
ocr自然语言处理人工智能aws
大语言模型是一种基于神经网络的自然语言处理技术,它能够学习和预测自然语言文本中的规律和模式,可以理解和生成自然语言的人工智能程序。在大型语言模型中,神经网络模型可以通过学习大量的语言数据,自动提取自然语言文本中的特征和模式,以实现自然语言的理解和生成。OCR技术(OpticalCharacterRecognition)是一种广泛应用的人工智能技术,在大语言模型基础上,能够从文档或图像中提取文本、手
- 深度学习框架相关-Python模块的介绍和使用---torch
sccum
Python常用库的介绍和使用深度学习python人工智能
文章摘要:'''1.torch模块,是一个开源的深度学习框架,主要用于构建和训练神经网络。PyTorch的设计目标是提供灵活且高效的工具集,用于深度学习和科学计算;2.下面主要介绍torch模块的五个功能:数据加载和处理,GPU加速,建立网络模型,模型的保存和加载,梯度更新和参数优化;上面功能主要用到的子模块如下:torch.utils.data、torch.cuda、torch.nn、torch
- Python中的深度学习神经网络
2301_78297473
深度学习python神经网络
文章目录1.引言-简介-深度学习与Python的关系2.神经网络的原理-神经网络基础知识-Python中的神经网络库与工具-构建与训练神经网络模型的步骤深度学习训练过程3.卷积神经网络的原理-卷积层与池化层-特征提取与全连接层-Python中的CNN库与工具4.Python中深度学习的挑战和未来发展方向-计算资源与速度-迁移学习与模型压缩-融合多种深度学习算法1.引言-简介深度学习是机器学习的一个
- Linux系统是如何收发网络包的
一个木的感情的小卷卷
计算机网络git网络协议数据库
Linux系统是如何收发网络包的参考资源小林coding2022.3.29OSI网络模型解决不同设备网络互联中的兼容性问题->解决不同设备在网络互联中的兼容性问题国际标准化组织制定了开放式系统互联通信参考模型->OSI网络模型该模型一共有七层应用层负责给应用程序提供统一的接口表示层负责把数据转换成兼容另一个系统能识别的格式会话层负责建立管理终止表现层实体之间的通信会话传输层负责端到端的数据传输网络
- 经典网络训练图像分类模型一
三十度角阳光的问候
分类数据挖掘人工智能
目录数据预处理部分:网络模块设置:网络模型保存与测试数据读取与预处理操作制作好数据源:读取标签对应的实际名字加载models中提供的模型,并且直接用训练的好权重当做初始化参数模型参数更新把模型输出层改成自己的设置哪些层需要训练优化器设置数据预处理部分:-数据增强:torchvision中transforms模块自带功能,比较实用-数据预处理:torchvision中transforms也帮我们实现
- 计算机网络模型介绍——OSI七层模型 vs TCP/IP五层模型 及各层协议
2020拯救世界
OSI七层模型vsTCP/IP五层模型及各层协议一.OSI七层模型OSI七层模型(OpenSystemInterconnect)即开放系统互连参考模型,是由ISO(InternationalOrganizationforStandardization)国际标准化组织提出的,用于计算机或通信系统间互联的标准体系。从上到下可分为七层:每一层都完成特定的功能,并为上一层提供服务,并使用下层所提供的服务。
- 域与活动目录
小Z资本
网安学习网络服务器运维安全
工作组:对等网络模型,不依赖中央控制服务器,适合小型网络\\计算机名\\IP地址来访问该计算机的共享资源域(domain):所有计算机成员被集中管理每个域都有一个或多个域控制器设置域:安装AD,将至少一台服务器提升为域控制器域结构:单域:一个或多个DC域树:一个或多个相关域的集合。共享一个连续的命名空间。平级或有层次域林:一个或多个域树的集合。每个树命名空间独立,但共享一个全局目录架构。林是AD的
- 网络模型与ARP详解
zhj574182446
网络协议网络协议网络
自学网络协议学到什么程度才算掌握,思考很久并在网上阅读了一番后,悟出了:不同程序员,学得程度不一样。一个java程序员,掌握基本的网络模型即可,从访问一个google走过的路由,什么时候涉及什么协议。了解了大概的网络模型之后,你在编程中基本所需的已足够。再深入了解一些原理的东西,比如IP选址、ARP实现与ARP攻防。我学习的网络模型总结:从我访问一个google开始,在浏览器中访问http://w
- 为什么我们会产生共情?
葭芷之畔
Bower(1981)提出了关于情绪记忆的理论模型——情感联想网络理论。该理论认为,人们的记忆网络模型不仅包含对语义的记忆,还与情感记忆相连接,语义和情感记忆交叉形成结点是一个富含语义和情感结点的网络。若外界刺激激活了其中的一个结点后,语义和情感结点就将同时被激活。这就使得人们偏向于提取与自身情感相一致的信息。
- Docker网络模型深度解析教程
man2017
运维docker网络容器
Docker网络模型深度解析教程1.引言目的与目标读者本教程旨在为初学者和有一定经验的开发者提供一份详尽的指南,以理解Docker网络模型的工作原理及其在实际部署中的应用。适合对Docker感兴趣的技术人员、运维工程师以及开发人员。Docker简介Docker是一个开源的应用容器引擎,它允许开发者打包他们的应用以及依赖包到一个可移植的容器中,然后发布到任何流行的Linux或Windows机器上。D
- Docker 网络模型深度解析
乌南竹
docker网络容器
Docker是现代应用程序开发和部署中广泛使用的容器化平台,它的核心优势之一在于其网络模型的灵活性与功能性。Docker网络模型的设计旨在支持容器之间的通信,并确保容器可以在多种网络环境中安全、可靠地运行。在本文中,我们将对Docker网络模型进行深度解析,了解其组成部分、主要类型、工作原理以及常见的网络管理策略。一、Docker网络的基本概念在Docker中,网络允许容器彼此之间以及与外部世界进
- 每天五分钟计算机视觉:Siamese深度神经网络模型和FaceNet的关系
幻风_huanfeng
计算机视觉计算机视觉dnn人工智能SiameseFaceNet神经网络
本文重点在前面的课程中,我们学习了Siamese深度神经网络模型和FaceNet,二者都可以完成人脸识别任务,本文进行整理学习,理清二者的区别和联系。基本概念与原理Siamese深度神经网络模型Siamese网络,又称孪生网络,由两个结构相同且权重共享的神经网络组成。这两个网络分别处理输入的对比样本,通过比较两个输入样本的特征向量来判断它们的相似度。在人脸识别中,Siamese网络通过计算输入人脸
- 设备仪器仪表盘读数识别系统 YOLOv5
燧机科技SuiJi
YOLO机器学习人工智能深度学习
设备仪器仪表盘读数识别系统基于YoLov8网络模型智能视觉分析技术,设备仪器仪表盘读数识别系统自动识别指针型仪表读数。设备仪器仪表盘读数识别系统对工业仪表盘数据进行实时读取,不需人为干预当监测到指针仪表读数数据异常时,立即自动抓拍告警提醒后台值班管理人员及时处理,避免意外的发生。设备仪器仪表盘读数识别系统主要适用于油田、工厂等场景需要值班人员及时统计指针仪表读数信息。设备仪器仪表盘读数识别系统通过
- 做大模型 千万别买苹果笔记本电脑
路人与大师
电脑
对于大模型(如大型神经网络模型)的训练和推理,苹果笔记本电脑(尤其是搭载AppleSilicon芯片的MacBook)确实存在一些限制,这些问题可能让开发者在处理大规模AI项目时感到不适合。以下是一些主要原因:1.GPU不适合深度学习AppleSiliconGPU限制:Apple自家芯片(如M1和M2)的GPU架构与传统的NVIDIAGPU(通常是深度学习和大模型训练的首选)不同。NVIDIA的C
- Docker网络模型深度解析
109702008
网络docker人工智能学习
Docker网络模型是Docker容器化技术的重要组成部分,它通过不同的网络驱动来实现容器间及容器与外部环境的通信。深入理解Docker网络模型有助于更好地管理和优化容器化应用。下面我们将详细探讨Docker的主要网络模式及其实现机制。1.Docker网络驱动概述Docker提供了多种网络驱动,用于满足不同的网络需求。主要的网络驱动包括:-Bridge(桥接网络)-Host(主机网络)-None-
- PyTorch Geometric(torch_geometric)简介
小桥流水---人工智能
机器学习算法深度学习人工智能pytorch人工智能python
在深入探讨PyTorchGeometric(通常简称为PyG)之前,我们先了解一下它的背景和应用。PyG是基于PyTorch的一个扩展库,专为图数据和图网络模型设计。图网络是深度学习领域的一种强大工具,它能够处理结构化数据,如社交网络、分子结构、交通网络等。PyTorchGeometric的主要功能数据处理与加载:图数据的简化表示:PyG提供了一种高效的方式来表示和存储图数据。主要是通过Data对
- 【技术博客】生成式对抗网络模型综述
MomodelAI
34-生成式对抗网络模型综述作者:张真源GANGAN简介生成式对抗网络(Generativeadversarialnetworks,GANs)的核心思想源自于零和博弈,包括生成器和判别器两个部分。生成器接收随机变量并生成“假”样本,判别器则用于判断输入的样本是真实的还是合成的。两者通过相互对抗来获得彼此性能的提升。判别器所作的其实就是一个二分类任务,我们可以计算他的损失并进行反向传播求出梯度,从而
- 20.神经网络 - 搭建小实战和 Sequential 的使用
椰皮糖
深度学习神经网络人工智能深度学习
神经网络-搭建小实战和Sequential的使用在PyTorch中,Sequential是一个容器(container)类,用于构建神经网络模型。它允许你按顺序(sequential)添加不同的网络层,并将它们串联在一起,形成一个网络模型。这样做可以方便地定义简单的前向传播过程,适用于许多基本的网络结构。Sequential的优点之一是其简洁性和易读性,特别适用于简单的网络结构。然而,对于更复杂的
- 深度学习与OpenCV:解锁计算机视觉的无限可能
程序员-李旭亮
深度学习
在科技日新月异的今天,计算机视觉作为人工智能领域的一颗璀璨明珠,正以前所未有的速度改变着我们的生活与工作方式。而《深度学习》与OpenCV,作为这一领域的两大重要工具,更是为计算机视觉的入门与深入探索铺设了坚实的基石。本文将带您一窥这两者的魅力,探索它们如何携手开启计算机视觉的无限可能。深度学习:智能的催化剂深度学习,作为机器学习的一个分支,其核心在于通过构建深层次的神经网络模型,模拟人脑的学习过
- 在STM32上实现嵌入式人工智能应用
嵌入式详谈
stm32人工智能嵌入式硬件
引言随着微控制器的计算能力不断增强,人工智能(AI)开始在嵌入式系统中扮演越来越重要的角色。STM32微控制器由于其高性能和低功耗的特性,非常适合部署轻量级AI模型。本文将探讨如何在STM32平台上实现深度学习应用,特别是利用STM32Cube.AI工具链将训练好的神经网络模型部署到STM32设备上。环境准备硬件选择:STM32F746GDiscoverykit,具备足够的计算资源和内存支持复杂模
- 戴尔笔记本win8系统改装win7系统
sophia天雪
win7戴尔改装系统win8
戴尔win8 系统改装win7 系统详述
第一步:使用U盘制作虚拟光驱:
1)下载安装UltraISO:注册码可以在网上搜索。
2)启动UltraISO,点击“文件”—》“打开”按钮,打开已经准备好的ISO镜像文
- BeanUtils.copyProperties使用笔记
bylijinnan
java
BeanUtils.copyProperties VS PropertyUtils.copyProperties
两者最大的区别是:
BeanUtils.copyProperties会进行类型转换,而PropertyUtils.copyProperties不会。
既然进行了类型转换,那BeanUtils.copyProperties的速度比不上PropertyUtils.copyProp
- MyEclipse中文乱码问题
0624chenhong
MyEclipse
一、设置新建常见文件的默认编码格式,也就是文件保存的格式。
在不对MyEclipse进行设置的时候,默认保存文件的编码,一般跟简体中文操作系统(如windows2000,windowsXP)的编码一致,即GBK。
在简体中文系统下,ANSI 编码代表 GBK编码;在日文操作系统下,ANSI 编码代表 JIS 编码。
Window-->Preferences-->General -
- 发送邮件
不懂事的小屁孩
send email
import org.apache.commons.mail.EmailAttachment;
import org.apache.commons.mail.EmailException;
import org.apache.commons.mail.HtmlEmail;
import org.apache.commons.mail.MultiPartEmail;
- 动画合集
换个号韩国红果果
htmlcss
动画 指一种样式变为另一种样式 keyframes应当始终定义0 100 过程
1 transition 制作鼠标滑过图片时的放大效果
css
.wrap{
width: 340px;height: 340px;
position: absolute;
top: 30%;
left: 20%;
overflow: hidden;
bor
- 网络最常见的攻击方式竟然是SQL注入
蓝儿唯美
sql注入
NTT研究表明,尽管SQL注入(SQLi)型攻击记录详尽且为人熟知,但目前网络应用程序仍然是SQLi攻击的重灾区。
信息安全和风险管理公司NTTCom Security发布的《2015全球智能威胁风险报告》表明,目前黑客攻击网络应用程序方式中最流行的,要数SQLi攻击。报告对去年发生的60亿攻击 行为进行分析,指出SQLi攻击是最常见的网络应用程序攻击方式。全球网络应用程序攻击中,SQLi攻击占
- java笔记2
a-john
java
类的封装:
1,java中,对象就是一个封装体。封装是把对象的属性和服务结合成一个独立的的单位。并尽可能隐藏对象的内部细节(尤其是私有数据)
2,目的:使对象以外的部分不能随意存取对象的内部数据(如属性),从而使软件错误能够局部化,减少差错和排错的难度。
3,简单来说,“隐藏属性、方法或实现细节的过程”称为——封装。
4,封装的特性:
4.1设置
- [Andengine]Error:can't creat bitmap form path “gfx/xxx.xxx”
aijuans
学习Android遇到的错误
最开始遇到这个错误是很早以前了,以前也没注意,只当是一个不理解的bug,因为所有的texture,textureregion都没有问题,但是就是提示错误。
昨天和美工要图片,本来是要背景透明的png格式,可是她却给了我一个jpg的。说明了之后她说没法改,因为没有png这个保存选项。
我就看了一下,和她要了psd的文件,还好我有一点
- 自己写的一个繁体到简体的转换程序
asialee
java转换繁体filter简体
今天调研一个任务,基于java的filter实现繁体到简体的转换,于是写了一个demo,给各位博友奉上,欢迎批评指正。
实现的思路是重载request的调取参数的几个方法,然后做下转换。
- android意图和意图监听器技术
百合不是茶
android显示意图隐式意图意图监听器
Intent是在activity之间传递数据;Intent的传递分为显示传递和隐式传递
显式意图:调用Intent.setComponent() 或 Intent.setClassName() 或 Intent.setClass()方法明确指定了组件名的Intent为显式意图,显式意图明确指定了Intent应该传递给哪个组件。
隐式意图;不指明调用的名称,根据设
- spring3中新增的@value注解
bijian1013
javaspring@Value
在spring 3.0中,可以通过使用@value,对一些如xxx.properties文件中的文件,进行键值对的注入,例子如下:
1.首先在applicationContext.xml中加入:
<beans xmlns="http://www.springframework.
- Jboss启用CXF日志
sunjing
logjbossCXF
1. 在standalone.xml配置文件中添加system-properties:
<system-properties> <property name="org.apache.cxf.logging.enabled" value=&
- 【Hadoop三】Centos7_x86_64部署Hadoop集群之编译Hadoop源代码
bit1129
centos
编译必需的软件
Firebugs3.0.0
Maven3.2.3
Ant
JDK1.7.0_67
protobuf-2.5.0
Hadoop 2.5.2源码包
Firebugs3.0.0
http://sourceforge.jp/projects/sfnet_findbug
- struts2验证框架的使用和扩展
白糖_
框架xmlbeanstruts正则表达式
struts2能够对前台提交的表单数据进行输入有效性校验,通常有两种方式:
1、在Action类中通过validatexx方法验证,这种方式很简单,在此不再赘述;
2、通过编写xx-validation.xml文件执行表单验证,当用户提交表单请求后,struts会优先执行xml文件,如果校验不通过是不会让请求访问指定action的。
本文介绍一下struts2通过xml文件进行校验的方法并说
- 记录-感悟
braveCS
感悟
再翻翻以前写的感悟,有时会发现自己很幼稚,也会让自己找回初心。
2015-1-11 1. 能在工作之余学习感兴趣的东西已经很幸福了;
2. 要改变自己,不能这样一直在原来区域,要突破安全区舒适区,才能提高自己,往好的方面发展;
3. 多反省多思考;要会用工具,而不是变成工具的奴隶;
4. 一天内集中一个定长时间段看最新资讯和偏流式博
- 编程之美-数组中最长递增子序列
bylijinnan
编程之美
import java.util.Arrays;
import java.util.Random;
public class LongestAccendingSubSequence {
/**
* 编程之美 数组中最长递增子序列
* 书上的解法容易理解
* 另一方法书上没有提到的是,可以将数组排序(由小到大)得到新的数组,
* 然后求排序后的数组与原数
- 读书笔记5
chengxuyuancsdn
重复提交struts2的token验证
1、重复提交
2、struts2的token验证
3、用response返回xml时的注意
1、重复提交
(1)应用场景
(1-1)点击提交按钮两次。
(1-2)使用浏览器后退按钮重复之前的操作,导致重复提交表单。
(1-3)刷新页面
(1-4)使用浏览器历史记录重复提交表单。
(1-5)浏览器重复的 HTTP 请求。
(2)解决方法
(2-1)禁掉提交按钮
(2-2)
- [时空与探索]全球联合进行第二次费城实验的可能性
comsci
二次世界大战前后,由爱因斯坦参加的一次在海军舰艇上进行的物理学实验 -费城实验
至今给我们大家留下很多迷团.....
关于费城实验的详细过程,大家可以在网络上搜索一下,我这里就不详细描述了
在这里,我的意思是,现在
- easy connect 之 ORA-12154: TNS: 无法解析指定的连接标识符
daizj
oracleORA-12154
用easy connect连接出现“tns无法解析指定的连接标示符”的错误,如下:
C:\Users\Administrator>sqlplus username/
[email protected]:1521/orcl
SQL*Plus: Release 10.2.0.1.0 – Production on 星期一 5月 21 18:16:20 2012
Copyright (c) 198
- 简单排序:归并排序
dieslrae
归并排序
public void mergeSort(int[] array){
int temp = array.length/2;
if(temp == 0){
return;
}
int[] a = new int[temp];
int
- C语言中字符串的\0和空格
dcj3sjt126com
c
\0 为字符串结束符,比如说:
abcd (空格)cdefg;
存入数组时,空格作为一个字符占有一个字节的空间,我们
- 解决Composer国内速度慢的办法
dcj3sjt126com
Composer
用法:
有两种方式启用本镜像服务:
1 将以下配置信息添加到 Composer 的配置文件 config.json 中(系统全局配置)。见“例1”
2 将以下配置信息添加到你的项目的 composer.json 文件中(针对单个项目配置)。见“例2”
为了避免安装包的时候都要执行两次查询,切记要添加禁用 packagist 的设置,如下 1 2 3 4 5
- 高效可伸缩的结果缓存
shuizhaosi888
高效可伸缩的结果缓存
/**
* 要执行的算法,返回结果v
*/
public interface Computable<A, V> {
public V comput(final A arg);
}
/**
* 用于缓存数据
*/
public class Memoizer<A, V> implements Computable<A,
- 三点定位的算法
haoningabc
c算法
三点定位,
已知a,b,c三个顶点的x,y坐标
和三个点都z坐标的距离,la,lb,lc
求z点的坐标
原理就是围绕a,b,c 三个点画圆,三个圆焦点的部分就是所求
但是,由于三个点的距离可能不准,不一定会有结果,
所以是三个圆环的焦点,环的宽度开始为0,没有取到则加1
运行
gcc -lm test.c
test.c代码如下
#include "stdi
- epoll使用详解
jimmee
clinux服务端编程epoll
epoll - I/O event notification facility在linux的网络编程中,很长的时间都在使用select来做事件触发。在linux新的内核中,有了一种替换它的机制,就是epoll。相比于select,epoll最大的好处在于它不会随着监听fd数目的增长而降低效率。因为在内核中的select实现中,它是采用轮询来处理的,轮询的fd数目越多,自然耗时越多。并且,在linu
- Hibernate对Enum的映射的基本使用方法
linzx0212
enumHibernate
枚举
/**
* 性别枚举
*/
public enum Gender {
MALE(0), FEMALE(1), OTHER(2);
private Gender(int i) {
this.i = i;
}
private int i;
public int getI
- 第10章 高级事件(下)
onestopweb
事件
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- 孙子兵法
roadrunners
孙子兵法
始计第一
孙子曰:
兵者,国之大事,死生之地,存亡之道,不可不察也。
故经之以五事,校之以计,而索其情:一曰道,二曰天,三曰地,四曰将,五
曰法。道者,令民于上同意,可与之死,可与之生,而不危也;天者,阴阳、寒暑
、时制也;地者,远近、险易、广狭、死生也;将者,智、信、仁、勇、严也;法
者,曲制、官道、主用也。凡此五者,将莫不闻,知之者胜,不知之者不胜。故校
之以计,而索其情,曰
- MySQL双向复制
tomcat_oracle
mysql
本文包括:
主机配置
从机配置
建立主-从复制
建立双向复制
背景
按照以下简单的步骤:
参考一下:
在机器A配置主机(192.168.1.30)
在机器B配置从机(192.168.1.29)
我们可以使用下面的步骤来实现这一点
步骤1:机器A设置主机
在主机中打开配置文件 ,
- zoj 3822 Domination(dp)
阿尔萨斯
Mina
题目链接:zoj 3822 Domination
题目大意:给定一个N∗M的棋盘,每次任选一个位置放置一枚棋子,直到每行每列上都至少有一枚棋子,问放置棋子个数的期望。
解题思路:大白书上概率那一张有一道类似的题目,但是因为时间比较久了,还是稍微想了一下。dp[i][j][k]表示i行j列上均有至少一枚棋子,并且消耗k步的概率(k≤i∗j),因为放置在i+1~n上等价与放在i+1行上,同理