题目描述:
Given an unsorted array of integers, find the length of longest increasing subsequence.
For example,
Given [10, 9, 2, 5, 3, 7, 101, 18]
,
The longest increasing subsequence is [2, 3, 7, 101]
, therefore the length is 4
. Note that there may be more than one LIS combination, it is only necessary for you to return the length.
Your algorithm should run in O(n2) complexity.
Follow up: Could you improve it to O(n log n) time complexity?
这个题想就是用动态规划的方法去做,但是一开始我陷入了误区,我思考的是dp[i]要么等于dp[i-1],要么等于dp[i-1]+1.这样讨论起来就比较复杂了。
这个题的递归式是:dp[i] = max{dp[j] + 1,dp[i]} 其中j < i && nums[j] < nums[i]
然后用自下而上的动态规划算法即可求解:
public class Solution { public int lengthOfLIS(int[] nums) { if(nums.length<2) return nums.length; int[] dp=new int[nums.length]; Arrays.fill(dp, 1);int max=1; for(int i=1;i<nums.length;i++){ for(int j=0;j<i;j++){ if(nums[j]<nums[i]&&dp[j]+1>dp[i]){ dp[i]=dp[j]+1; if(dp[i]>max) max=dp[i]; } } } return max; } }