照例先上题目:
1:Pre-Post-erous!
查看 提交 统计 提问
总时间限制: 1000ms 内存限制: 65536kB
描述
We are all familiar with pre-order, in-order and post-order traversals of binary trees. A common problem in data structure classes is to find the pre-order traversal of a binary tree when given the in-order and post-order traversals. Alternatively, you can find the post-order traversal when given the in-order and pre-order. However, in general you cannot determine the in-order traversal of a tree when given its pre-order and post-order traversals. Consider the four binary trees below:
a a a a
/ / \ \
b b b b
/ \ / \
c c c c
All of these trees have the same pre-order and post-order traversals. This phenomenon is not restricted to binary trees, but holds for general m-ary trees as well.
输入
Input will consist of multiple problem instances. Each instance will consist of a line of the form
m s1 s2
indicating that the trees are m-ary trees, s1 is the pre-order traversal and s2 is the post-order traversal.All traversal strings will consist of lowercase alphabetic characters. For all input instances, 1 <= m <= 20 and the length of s1 and s2 will be between 1 and 26 inclusive. If the length of s1 is k (which is the same as the length of s2, of course), the first k letters of the alphabet will be used in the strings. An input line of 0 will terminate the input.
输出
For each problem instance, you should output one line containing the number of possible trees which would result in the pre-order and post-order traversals for the instance. All output values will be within the range of a 32-bit signed integer. For each problem instance, you are guaranteed that there is at least one tree with the given pre-order and post-order traversals.
样例输入
2 abc cba
2 abc bca
10 abc bca
13 abejkcfghid jkebfghicda
0
样例输出
4
1
45
207352860
来源
East Central North America 2002
#include <iostream> #include <cstdio> #include <string> #include <cstring> using namespace std; #include <vector> #define MAXLEN 30 char pre[MAXLEN]; char post[MAXLEN]; vector<int> branch_vec; //计算n! int factorial(int n) { int result=1; if (n==0) return 1; else { for (int i=1; i<=n; ++i) result *= i; return result; } } //计算C(n, m) int calc_C(int n, int m) { unsigned int tmp=1; for (int i=0; i<m; ++i, --n) tmp*=n; return (tmp/(factorial(m))); } //计算每一个根结点有多少分支(子树) void branch_count(int pr1, int pr2, int po1, int po2) //参数是:preOrder序列的起止下标、postOrder序列的起止下标 { int a,b,len, branch=0; if(pr1==pr2 && po1==po2) return; //递归出口:这个根结点没有任何子树。 else { a=pr1+1; b=po1; len=0; while (b<po2) { while ( (pre[a] != post[b+len]) && (b+len<po2) ) ++len; ++branch; //每找到一个子树,++branch branch_count(a, a+len, b, b+len); //对这个子树递归执行branch_count a=a+len+1; b=b+len+1; len=0; } branch_vec.push_back(branch); //这个根结点的branch数目存入vector容器 } } int main() { freopen("D:\\in.txt", "r", stdin); freopen("D:\\out.txt", "w", stdout); int m, init_len, ans; while (1) { scanf("%d", &m); if(m==0) break; else { scanf("%s%s", pre, post); init_len=strlen(pre); branch_count(0, init_len-1, 0, init_len-1); ans=1; for (int i=0; i<branch_vec.size(); ++i) { ans*=(calc_C(m, branch_vec[i])); } printf("%d\n", ans); branch_vec.clear(); } } return 0; }