- (5)【Python/机器学习/深度学习】Machine-Learning模型与算法应用—12种聚类算法说明与归纳
代码骑士
#机器学习人工智能
目录一、12种聚类(无监督学习)算法说明和区分比较聚类算法的类型(一)编辑导入函数库加载数据集编辑(1)K-Means--Centroidmodels(2)Mini-BatchK-Means--Centroidmodels(3)AffinityPropagation(Hierarchical)--Connectivitymodels(4)MeanShift--Centroidmodels聚类后如何
- 机器学习-*-MeanShift聚类算法及代码实现
Leo蓝色
机器学习Python均值漂移MeanShift聚类
MeanShift该算法也叫做均值漂移,在目标追踪中应用广泛。本身其实是一种基于密度的聚类算法。主要思路是:计算某一点A与其周围半径R内的向量距离的平均值M,计算出该点下一步漂移(移动)的方向(A=M+A)。当该点不再移动时,其与周围点形成一个类簇,计算这个类簇与历史类簇的距离,满足小于阈值D即合并为同一个类簇,不满足则自身形成一个类簇。直到所有的数据点选取完毕。一般形式对于给定的n维空间RnR^
- 机器学习系列 - Mean Shift聚类
学海一叶
机器学习算法聚类机器学习python计算机视觉
文章目录前言一、原理前置知识点MeanShift计算步骤二、应用举例-图像分割三、聚类实战-简单实例bandwidth=1bandwidth=2总结前言MeanShift(均值漂移)是基于密度的非参数聚类算法,其算法思想是假设不同簇类的数据集符合不同的概率密度分布,找到任一样本点密度增大的最快方向(最快方向的含义就是MeanShift),样本密度高的区域对应于该分布的最大值,这些样本点最终会在局部
- 1.23聚类算法(kmeans(初始随机选k,迭代收敛),DBSCAN(dij选点),MEANSHIFT(质心收敛),AGENS(最小生成树)),蚁群算法(参数理解、过程理解、伪代码、代码)
CQU_JIAKE
机器学习&神经网络数学方法数模人工智能算法机器学习启发式算法聚类数学建模
聚类算法聚类结果不变K-meansK值是事先确定好的,是要划分的聚类的数量;初始时随机选择k个点,然后逐渐选择离他最近的点,不断锁定最近的,最后计算方差和;这个是轮流的这个就类似于模拟退火的思想当前聚类下的方差和,也称为簇内方差(within-clustervariance),是一种度量聚类质量的指标。它衡量了簇内数据点与各自簇中心的差异程度。方差和越小,表示簇内的数据点越紧密聚集在一起。计算当前
- OpenCV-Python(39):Meanshift和Camshift算法
图灵追慕者
opencv-pythonopencvMeanshift算法Camshift算法视频分析目标跟踪
目标学习了解Meanshift和Camshift算法在视频中找到并跟踪目标Meanshift原理Meanshift算法是一种基于密度的聚类算法,用于将数据点划分为不同的类别。它的原理是通过数据点的密度分布来确定聚类中心,然后将数据点移动到离其最近的聚类中心,并不断迭代这个过程,直到收敛为止。假设我们有一堆点(比如直方图反向投影得到的点)和一个小的圆形窗口,我们要完成的任务就是将这个窗口移动到最大灰
- 四种无监督聚类算法说明
取名真难.
机器学习算法聚类人工智能机器学习
目录一、K-Means无监督学习(K-Means)的认识-CSDN博客二、Mini-BatchK-Means--Centroidmodels三、AffinityPropagation(Hierarchical)--Connectivitymodels四、MeanShift--Centroidmodels无监督聚类是一种机器学习技术,用于将数据分组成不同的类别,而无需提前标记或指导。在无监督聚类中,
- 机器学习--K均值聚类
Anonymous&
人工智能kmeans算法pandasnumpy
机器学习--聚类一、无监督学习二、KMeans聚类2.1概览2.2理论介绍2.2.1模型2.2.2策略2.2.3算法2.3案例讲解2.4Python实现2.4.1导入数据处理相关库以及读取数据2.4.2查看相关数据并进行可视化展示2.4.3导入sklearn并训练模型2.4.4评估模型三、常用的其他聚类算法3.1均值漂移聚类(Meanshift)3.2DBSCAN算法(基于密度的空间聚类算法)总结
- 《opencv实用探索·十八》Camshift进行目标追踪流程
梦回阑珊
opencv实用学习opencv人工智能计算机视觉均值算法图像处理c++
CamShift(ContinuouslyAdaptiveMeanShift)是一种用于目标跟踪的方法,它是均值漂移(MeanShift)的扩展,支持对目标的旋转跟踪,能够对目标的大小和形状进行自适应调整。cv::CamShift和cv::meanShift区别:cv::meanShift:这是一种用于均值漂移目标跟踪的算法。它基于颜色直方图的均值漂移,寻找输入图像中与模板颜色直方图最相似的区域。
- 深度学习与meanshift结合实现跟踪
zhcheng26
技术文档
深度学习一个重要的作用是实现目标的特征实现自动提取过程,传统的meanshift跟踪常用的有颜色直方图,HOG等边缘特征提取目标实现跟踪,则meanshift跟踪可实现的则是用深度学习自动学习的特征来完成跟踪。好处是对于复杂的情况也能很好的提取目标的特征,使得跟踪的鲁棒性和精度更高。很多人担心的是实时性的问题,其实来说,深度学习完成的过程主要分成两部,预训练预测,预训练完全可以通过离线训练来完成,
- Grabcut算法在图片分割中的应用
视图猿人
QTOpenCV图像视频处理算法计算机视觉人工智能
GrabCut算法原理Grabcut是基于图割(graphcut)实现的图像分割算法,它需要用户输入一个boundingbox作为分割目标位置,实现对目标与背景的分离/分割,与KMeans与MeanShift等图像分割方法不同。Grabcut分割速度快,效果好,支持交互操作,因此在很多APP图像分割/背景虚化的软件中可以看到其身影。主要需要如下知识:k均值聚类、高斯混合模型建模(GMM)、maxf
- OpenCV入门11——图像的分割与修复
源代码•宸
OpenCVopencv人工智能计算机视觉经验分享算法
文章目录图像分割的基本概念实战-分水岭法(一)实战-分水岭法(二)GrabCut基本原理实战-GrabCut主体程序的实现实战-GrabCut鼠标事件的处理实战-调用GrabCut实现图像分割meanshift图像分割视频前后景分离其它对视频前后影分离的方法图像修复图像分割是计算机视觉中的一个重要领域,通过它我们可以做物体的统计,背景的变换等许多操作,而图像的修复可以说是它的逆运算图像分割的基本概
- opencv-Meanshift 和 Camshift 算法
普通研究者
opencvopencv算法人工智能
MeanShift和CamShift都是用于目标跟踪的算法,基于颜色直方图的方法。它们主要用于在视频序列中追踪运动的对象。MeanShift(均值漂移):原理:MeanShift算法的基本思想是通过不断调整窗口的中心,使得窗口中的样本点的平均值向目标的密度最大的区域移动。具体来说,它使用核密度估计来寻找样本分布的最大概率密度,并将窗口中心移动到密度最大的位置。应用:MeanShift在静止相机下的
- 机器学习/sklearn笔记:MeanShift
UQI-LIUWJ
python库整理机器学习机器学习sklearn笔记
1算法介绍一种基于质心的算法通过更新候选质心使其成为给定区域内点的均值候选质心的位置是通过一种称为“爬山”技术迭代调整的,该技术找到估计的概率密度的局部最大值1.1基本形式给定d维空间的n个数据点集X,那么对于空间中的任意点x的均值漂移向量基本形式可以表示为:其中Sk表示数据集的点到x的距离小于球半径h的数据点漂移过程就类似于”梯度下降“通过计算漂移向量,然后把球圆心x的位置更新一下求解一个向量,
- 【均值漂移】mean-shift算法详解
zy_destiny
Python1024程序员节pythonmeanshift均值漂移均值算法
Mean-shift算法是一种非参数密度估计算法,主要用于图像分割、目标跟踪和聚类等领域。其基本原理是以某个点为中心,计算该点周围所有点的密度,并将中心点移动到密度最大的位置,不断迭代,直到中心点不再移动或满足停止条件为止。目录思路理解算法步骤python代码有意思的知识又增加了,祝大家1024快乐相比kmeans聚类,Meanshift最大的优势是不需要人为指定分成几类。该算法会根据分布密度自动
- 学习OpenCV2——CamShift之目标跟踪
Markala
OpenCV2目标跟踪OpenCV2CamShift目标跟踪
1.CamShift思想Camshift全称是"ContinuouslyAdaptiveMean-SHIFT",即连续自适应的MeanShift算法,是MeanShift算法的改进。CamShift的基本思想是视频图像的所有帧作MeanShift运算,并将上一帧的结果(即SearchWindow的中心和大小)作为下一帧MeanShift算法的SearchWindow的初始值,如此迭代下去。这个过程
- OpenCV实现视频的追踪(meanshift、Camshift)
txz2035
OpenCV从入门到精通opencv人工智能计算机视觉python
目录1,meanshift1.1算法流程1.2算法实现1.3代码实现1.4结果展示1,meanshift1.1算法流程1.2算法实现1.3代码实现importnumpyasnpimportcv2ascv#读取视频cap=cv.VideoCapture('video.mp4')#检查视频是否成功打开ifnotcap.isOpened():print("Error:Cannotopenvideofil
- Python Opencv实践 - 视频目标追踪CamShift
亦枫Leonlew
OpenCV实践-pythonopencv人工智能计算机视觉
CamShift是MeanShift的改进,能够动态自适应跟踪目标大小,而不是一个固定窗口。在opencv中使用CamShift进行目标追踪的方法和MeanShift差不多,只需要替换meanShift方法并且使用cv.polylines绘制出结果多边形窗口即可。参考资料:PythonOpencv实践-视频目标追踪MeanShift_亦枫Leonlew的博客-CSDN博客pythonopencv入
- Python Opencv实践 - 视频目标追踪MeanShift
亦枫Leonlew
OpenCV实践-pythonpythonopencv开发语言计算机视觉图像处理
参考资料:opencv/python标定时用到的几个函数意义_criteriaopencv_是三水不是泗水的博客-CSDN博客python+OpenCV笔记(二十六):视频追踪(meanshift、Camshift)_cv2.meanshift_ReadyGo!!!的博客-CSDN博客importcv2ascvimportnumpyasnpimportmatplotlib.pyplotasplt#
- 传统目标检测算法【1】-Mean shift
cnjs1994
计算机视觉-Opencv强化学习等的趣味小实验目标检测算法目标跟踪
传统目标检测算法【1】-Meanshift一、均值漂移(MeanShift)二、Meanshift的opencvpython实现三、Python实现完整代码参考文献资料一、均值漂移(MeanShift)该算法寻找离散样本的最大密度,并且重新计算下一帧的最大密度,这个算法的特点就是可以给出目标移动的方向。meanshift算法的原理很简单。假设你有一堆点集,还有一个小的窗口,这个窗口可能是圆形的,现
- OPENCV--实现meanshift图像分割
weixin_44119674
OpenCV入门学习opencv人工智能计算机视觉
Meanshift原理效果图API#-*-coding:utf-8-*-"""作者:794919561日期:2023/9/13"""importcv2importnumpyasnpimg=cv2.imread("F:\\learnOpenCV\\openCVLearning\\pictures\\Lena.jpg
- openCV_meanshift
董占峰
目标追踪#!/usr/bin/python#-*-coding:utf-8-*-importnumpyasnpimportcv2ascvcap=cv.VideoCapture(0)#takefirstframeofthevideoret,frame=cap.read()#setupinitiallocationofwindowr,h,c,w=250,90,400,125#simplyhardcod
- Lesson5-2:OpenCV视频操作---视频追踪
YoLo-8
OpenCVopencv音视频人工智能
学习目标理解meanshift的原理知道camshift算法能够使用meanshift和Camshift进行目标追踪1.meanshift1.1原理meanshiftmeanshiftmeanshift算法的原理很简单。假设你有一堆点集,还有一个小的窗口,这个窗口可能是圆形的,现在你可能要移动这个窗口到点集密度最大的区域当中。如下图:最开始的窗口是蓝色圆环的区域,命名为C1C1C1。蓝色圆环的圆心
- 【算法实现】Meanshift 求2d散点的密度最大处,点最密集处
Hi_AI
python算法menshift
【PythonMeanshif】参考来源:http://www.chioka.in/meanshift-algorithm-for-the-rest-of-us-python/这个参考链接是提供代码的,针对于用meanshift对2D点集进行聚类,并返回聚类中心,那位大佬还对理论进行了较为详细的介绍,还有一些用相应API进行分割,聚类的说明,可以看看。算法简介:1、meanshift目前有几个比较
- OpenCV-Python中的图像处理-视频分析
SongYuLong的博客
OpenCVPythonpythonopencv图像处理
OpenCV-Python中的图像处理-视频分析视频分析Meanshift算法Camshift算法光流Lucas-KanadeOpticalFlowDenseOpticalFlow视频分析学习使用Meanshift和Camshift算法在视频中找到并跟踪目标对象:Meanshift算法Meanshift算法的基本原理是和很简单的。假设我们有一堆点(比如直方图反向投影得到的点),和一个小的圆形窗口,
- 利用Python进行单个和多个对象跟踪:meanShift、CamShift、Boosting、MIL算法的详细解析和实现
快撑死的鱼
python算法解析pythonboosting算法
第一部分一、引言物体跟踪技术是计算机视觉领域的一个重要研究内容,它的目标是在连续的视频帧中跟踪一个或多个感兴趣的物体。最近几年,随着深度学习技术的快速发展,物体跟踪领域也取得了显著的进步。然而,在深度学习之前,一些经典的物体跟踪算法,如MeanShift、CamShift、Boosting和MIL,一直在物体跟踪任务中发挥着重要的作用。在这篇文章中,我们将以Python为编程语言,详细地探讨这四种
- 使用深度学习模型对视频进行聚类分析-Pytorch、Skleran、Matplotlib
MarkJhon
深度学习pytorch人工智能
fromsklearn.datasetsimportmake_circlesfromsklearn.clusterimportKMeans,DBSCAN,SpectralClustering,Birch,MeanShift,AgglomerativeClusteringfromsklearn.metricsimportsilhouette_score,silhouette_samplesfroms
- python 视频分析_[OpenCV-Python] OpenCV 中视频分析 部分 VI
weixin_39905624
python视频分析
部分VI视频分析39Meanshift和和Camshift目标•本节我们要学习使用Meanshift和Camshift算法在视频中找到并跟踪目标对象39.1MeanshiftMeanshift算法的基本原理是和很简单的。假设我们有一堆点(比如直方图反向投影得到的点),和一个小的圆形窗口,我们要完成的任务就是将这个窗口移动到最大灰度密度处(或者是点最多的地方)。如下图所示:初始窗口是蓝色的“C1”,
- OpenCV图像处理-图像分割-MeanShift
羊羊羊i
图像处理opencv图像处理
MeanShift1.基本概念2.代码示例1.基本概念MeanShift严格说来并不是用来对图像进行分割的,而是在色彩层面的平滑滤波。它会中和色彩分布相近的颜色,平滑色彩细节,侵蚀掉面积较小的的颜色区域,它以图像上任意一点P为圆心,半径为sp,色彩幅值为sr进行不断地迭代。语法:pyrMeanShiftFiltering(img,doublesp,doublesr,maxLevel=1,termc
- 在Matlab环境下高效实施均值偏移(Mean Shift)算法并运用于灰度测试图像的快速原型设计:特征空间中的收敛过程
快撑死的鱼
算法matlab均值算法
在科学研究和工业界,图像处理已经成为了一个重要的应用领域。而在图像处理中,均值偏移(MeanShift)算法是一个在计算机视觉中非常重要的技术。本文将介绍如何在Matlab环境中实现均值偏移算法,并应用到灰度测试图像上,展示在特征空间中均值偏移的收敛过程。实战项目下载1.均值偏移算法(MeanShift)的基本原理均值偏移(MeanShift)算法是一种非参数的统计方法,常用于计算机视觉和图像处理
- 基于MeanShift的图像滤波方法
小张Tt
图像处理opencv计算机视觉人工智能
前言 在视觉领域中,图像滤波是一种常用的技术,用于去除图像中的噪声和平滑图像。其中,MeanShift滤波是一种基于颜色和空间信息的非参数化滤波算法。MeanShift滤波原理 MeanShift滤波是一种基于密度估计的非参数化滤波技术,它对每个像素都计算其所在领域内像素的颜色分布,并根据当前像素与领域内像素之间的相似度来调整像素值。具体步骤包括:1选择窗口大小和颜色带宽,并将窗口中心置于目标
- iOS http封装
374016526
ios服务器交互http网络请求
程序开发避免不了与服务器的交互,这里打包了一个自己写的http交互库。希望可以帮到大家。
内置一个basehttp,当我们创建自己的service可以继承实现。
KuroAppBaseHttp *baseHttp = [[KuroAppBaseHttp alloc] init];
[baseHttp setDelegate:self];
[baseHttp
- lolcat :一个在 Linux 终端中输出彩虹特效的命令行工具
brotherlamp
linuxlinux教程linux视频linux自学linux资料
那些相信 Linux 命令行是单调无聊且没有任何乐趣的人们,你们错了,这里有一些有关 Linux 的文章,它们展示着 Linux 是如何的有趣和“淘气” 。
在本文中,我将讨论一个名为“lolcat”的小工具 – 它可以在终端中生成彩虹般的颜色。
何为 lolcat ?
Lolcat 是一个针对 Linux,BSD 和 OSX 平台的工具,它类似于 cat 命令,并为 cat
- MongoDB索引管理(1)——[九]
eksliang
mongodbMongoDB管理索引
转载请出自出处:http://eksliang.iteye.com/blog/2178427 一、概述
数据库的索引与书籍的索引类似,有了索引就不需要翻转整本书。数据库的索引跟这个原理一样,首先在索引中找,在索引中找到条目以后,就可以直接跳转到目标文档的位置,从而使查询速度提高几个数据量级。
不使用索引的查询称
- Informatica参数及变量
18289753290
Informatica参数变量
下面是本人通俗的理解,如有不对之处,希望指正 info参数的设置:在info中用到的参数都在server的专门的配置文件中(最好以parma)结尾 下面的GLOBAl就是全局的,$开头的是系统级变量,$$开头的变量是自定义变量。如果是在session中或者mapping中用到的变量就是局部变量,那就把global换成对应的session或者mapping名字。
[GLOBAL] $Par
- python 解析unicode字符串为utf8编码字符串
酷的飞上天空
unicode
php返回的json字符串如果包含中文,则会被转换成\uxx格式的unicode编码字符串返回。
在浏览器中能正常识别这种编码,但是后台程序却不能识别,直接输出显示的是\uxx的字符,并未进行转码。
转换方式如下
>>> import json
>>> q = '{"text":"\u4
- Hibernate的总结
永夜-极光
Hibernate
1.hibernate的作用,简化对数据库的编码,使开发人员不必再与复杂的sql语句打交道
做项目大部分都需要用JAVA来链接数据库,比如你要做一个会员注册的 页面,那么 获取到用户填写的 基本信后,你要把这些基本信息存入数据库对应的表中,不用hibernate还有mybatis之类的框架,都不用的话就得用JDBC,也就是JAVA自己的,用这个东西你要写很多的代码,比如保存注册信
- SyntaxError: Non-UTF-8 code starting with '\xc4'
随便小屋
python
刚开始看一下Python语言,传说听强大的,但我感觉还是没Java强吧!
写Hello World的时候就遇到一个问题,在Eclipse中写的,代码如下
'''
Created on 2014年10月27日
@author: Logic
'''
print("Hello World!");
运行结果
SyntaxError: Non-UTF-8
- 学会敬酒礼仪 不做酒席菜鸟
aijuans
菜鸟
俗话说,酒是越喝越厚,但在酒桌上也有很多学问讲究,以下总结了一些酒桌上的你不得不注意的小细节。
细节一:领导相互喝完才轮到自己敬酒。敬酒一定要站起来,双手举杯。
细节二:可以多人敬一人,决不可一人敬多人,除非你是领导。
细节三:自己敬别人,如果不碰杯,自己喝多少可视乎情况而定,比如对方酒量,对方喝酒态度,切不可比对方喝得少,要知道是自己敬人。
细节四:自己敬别人,如果碰杯,一
- 《创新者的基因》读书笔记
aoyouzi
读书笔记《创新者的基因》
创新者的基因
创新者的“基因”,即最具创意的企业家具备的五种“发现技能”:联想,观察,实验,发问,建立人脉。
第一部分破坏性创新,从你开始
第一章破坏性创新者的基因
如何获得启示:
发现以下的因素起到了催化剂的作用:(1) -个挑战现状的问题;(2)对某项技术、某个公司或顾客的观察;(3) -次尝试新鲜事物的经验或实验;(4)与某人进行了一次交谈,为他点醒
- 表单验证技术
百合不是茶
JavaScriptDOM对象String对象事件
js最主要的功能就是验证表单,下面是我对表单验证的一些理解,贴出来与大家交流交流 ,数显我们要知道表单验证需要的技术点, String对象,事件,函数
一:String对象;通常是对字符串的操作;
1,String的属性;
字符串.length;表示该字符串的长度;
var str= "java"
- web.xml配置详解之context-param
bijian1013
javaservletweb.xmlcontext-param
一.格式定义:
<context-param>
<param-name>contextConfigLocation</param-name>
<param-value>contextConfigLocationValue></param-value>
</context-param>
作用:该元
- Web系统常见编码漏洞(开发工程师知晓)
Bill_chen
sqlPHPWebfckeditor脚本
1.头号大敌:SQL Injection
原因:程序中对用户输入检查不严格,用户可以提交一段数据库查询代码,根据程序返回的结果,
获得某些他想得知的数据,这就是所谓的SQL Injection,即SQL注入。
本质:
对于输入检查不充分,导致SQL语句将用户提交的非法数据当作语句的一部分来执行。
示例:
String query = "SELECT id FROM users
- 【MongoDB学习笔记六】MongoDB修改器
bit1129
mongodb
本文首先介绍下MongoDB的基本的增删改查操作,然后,详细介绍MongoDB提供的修改器,以完成各种各样的文档更新操作 MongoDB的主要操作
show dbs 显示当前用户能看到哪些数据库
use foobar 将数据库切换到foobar
show collections 显示当前数据库有哪些集合
db.people.update,update不带参数,可
- 提高职业素养,做好人生规划
白糖_
人生
培训讲师是成都著名的企业培训讲师,他在讲课中提出的一些观点很新颖,在此我收录了一些分享一下。注:讲师的观点不代表本人的观点,这些东西大家自己揣摩。
1、什么是职业规划:职业规划并不完全代表你到什么阶段要当什么官要拿多少钱,这些都只是梦想。职业规划是清楚的认识自己现在缺什么,这个阶段该学习什么,下个阶段缺什么,又应该怎么去规划学习,这样才算是规划。
- 国外的网站你都到哪边看?
bozch
技术网站国外
学习软件开发技术,如果没有什么英文基础,最好还是看国内的一些技术网站,例如:开源OSchina,csdn,iteye,51cto等等。
个人感觉如果英语基础能力不错的话,可以浏览国外的网站来进行软件技术基础的学习,例如java开发中常用的到的网站有apache.org 里面有apache的很多Projects,springframework.org是spring相关的项目网站,还有几个感觉不错的
- 编程之美-光影切割问题
bylijinnan
编程之美
package a;
public class DisorderCount {
/**《编程之美》“光影切割问题”
* 主要是两个问题:
* 1.数学公式(设定没有三条以上的直线交于同一点):
* 两条直线最多一个交点,将平面分成了4个区域;
* 三条直线最多三个交点,将平面分成了7个区域;
* 可以推出:N条直线 M个交点,区域数为N+M+1。
- 关于Web跨站执行脚本概念
chenbowen00
Web安全跨站执行脚本
跨站脚本攻击(XSS)是web应用程序中最危险和最常见的安全漏洞之一。安全研究人员发现这个漏洞在最受欢迎的网站,包括谷歌、Facebook、亚马逊、PayPal,和许多其他网站。如果你看看bug赏金计划,大多数报告的问题属于 XSS。为了防止跨站脚本攻击,浏览器也有自己的过滤器,但安全研究人员总是想方设法绕过这些过滤器。这个漏洞是通常用于执行cookie窃取、恶意软件传播,会话劫持,恶意重定向。在
- [开源项目与投资]投资开源项目之前需要统计该项目已有的用户数
comsci
开源项目
现在国内和国外,特别是美国那边,突然出现很多开源项目,但是这些项目的用户有多少,有多少忠诚的粉丝,对于投资者来讲,完全是一个未知数,那么要投资开源项目,我们投资者必须准确无误的知道该项目的全部情况,包括项目发起人的情况,项目的维持时间..项目的技术水平,项目的参与者的势力,项目投入产出的效益.....
- oracle alert log file(告警日志文件)
daizj
oracle告警日志文件alert log file
The alert log is a chronological log of messages and errors, and includes the following items:
All internal errors (ORA-00600), block corruption errors (ORA-01578), and deadlock errors (ORA-00060)
- 关于 CAS SSO 文章声明
denger
SSO
由于几年前写了几篇 CAS 系列的文章,之后陆续有人参照文章去实现,可都遇到了各种问题,同时经常或多或少的收到不少人的求助。现在这时特此说明几点:
1. 那些文章发表于好几年前了,CAS 已经更新几个很多版本了,由于近年已经没有做该领域方面的事情,所有文章也没有持续更新。
2. 文章只是提供思路,尽管 CAS 版本已经发生变化,但原理和流程仍然一致。最重要的是明白原理,然后
- 初二上学期难记单词
dcj3sjt126com
englishword
lesson 课
traffic 交通
matter 要紧;事物
happy 快乐的,幸福的
second 第二的
idea 主意;想法;意见
mean 意味着
important 重要的,重大的
never 从来,决不
afraid 害怕 的
fifth 第五的
hometown 故乡,家乡
discuss 讨论;议论
east 东方的
agree 同意;赞成
bo
- uicollectionview 纯代码布局, 添加头部视图
dcj3sjt126com
Collection
#import <UIKit/UIKit.h>
@interface myHeadView : UICollectionReusableView
{
UILabel *TitleLable;
}
-(void)setTextTitle;
@end
#import "myHeadView.h"
@implementation m
- N 位随机数字串的 JAVA 生成实现
FX夜归人
javaMath随机数Random
/**
* 功能描述 随机数工具类<br />
* @author FengXueYeGuiRen
* 创建时间 2014-7-25<br />
*/
public class RandomUtil {
// 随机数生成器
private static java.util.Random random = new java.util.R
- Ehcache(09)——缓存Web页面
234390216
ehcache页面缓存
页面缓存
目录
1 SimplePageCachingFilter
1.1 calculateKey
1.2 可配置的初始化参数
1.2.1 cach
- spring中少用的注解@primary解析
jackyrong
primary
这次看下spring中少见的注解@primary注解,例子
@Component
public class MetalSinger implements Singer{
@Override
public String sing(String lyrics) {
return "I am singing with DIO voice
- Java几款性能分析工具的对比
lbwahoo
java
Java几款性能分析工具的对比
摘自:http://my.oschina.net/liux/blog/51800
在给客户的应用程序维护的过程中,我注意到在高负载下的一些性能问题。理论上,增加对应用程序的负载会使性能等比率的下降。然而,我认为性能下降的比率远远高于负载的增加。我也发现,性能可以通过改变应用程序的逻辑来提升,甚至达到极限。为了更详细的了解这一点,我们需要做一些性能
- JVM参数配置大全
nickys
jvm应用服务器
JVM参数配置大全
/usr/local/jdk/bin/java -Dresin.home=/usr/local/resin -server -Xms1800M -Xmx1800M -Xmn300M -Xss512K -XX:PermSize=300M -XX:MaxPermSize=300M -XX:SurvivorRatio=8 -XX:MaxTenuringThreshold=5 -
- 搭建 CentOS 6 服务器(14) - squid、Varnish
rensanning
varnish
(一)squid
安装
# yum install httpd-tools -y
# htpasswd -c -b /etc/squid/passwords squiduser 123456
# yum install squid -y
设置
# cp /etc/squid/squid.conf /etc/squid/squid.conf.bak
# vi /etc/
- Spring缓存注解@Cache使用
tom_seed
spring
参考资料
http://www.ibm.com/developerworks/cn/opensource/os-cn-spring-cache/
http://swiftlet.net/archives/774
缓存注解有以下三个:
@Cacheable @CacheEvict @CachePut
- dom4j解析XML时出现"java.lang.noclassdeffounderror: org/jaxen/jaxenexception"错误
xp9802
java.lang.NoClassDefFoundError: org/jaxen/JaxenExc
关键字: java.lang.noclassdeffounderror: org/jaxen/jaxenexception
使用dom4j解析XML时,要快速获取某个节点的数据,使用XPath是个不错的方法,dom4j的快速手册里也建议使用这种方式
执行时却抛出以下异常:
Exceptio