STL 中的list 就是一 双向链表,可高效地进行插入删除元素。
list不支持随机访问。所以没有 at(pos)和operator[]。
list 对象list1, list2 分别有元素list1(1,2,3),list2(4,5,6) 。list< int>::iterator it;
list成员 |
说明 |
constructor |
构造函数 |
destructor |
析构函数 |
operator= |
赋值重载运算符 |
assign |
分配值 |
front |
返回第一个元素的引用 |
back |
返回最后一元素的引用 |
begin |
返回第一个元素的指针(iterator) |
end |
返回最后一个元素的下一位置的指针 |
rbegin |
返回链表最后一元素的后向指针(reverse_iterator or const) |
rend |
返回链表第一元素的下一位置的后向指针 |
push_back |
增加一元素到链表尾 |
push_front |
增加一元素到链表头 |
pop_back |
pop_back()删除链表尾的一个元素 |
pop_front |
删除链表头的一元素 |
clear |
删除所有元素 |
erase |
删除一个元素或一个区域的元素(两个重载) |
remove |
删除链表中匹配值的元素(匹配元素全部删除) |
remove_if |
删除条件满足的元素(遍历一次链表),参数为自定义的回调函数 |
empty |
判断是否链表为空 |
max_size |
返回链表最大可能长度 |
size |
返回链表中元素个数 |
resize |
重新定义链表长度(两重载函数) |
reverse |
反转链表 |
sort |
对链表排序,默认升序 |
merge |
合并两个有序链表并使之有序 |
splice |
对两个链表进行结合(三个重载函数) 结合后第二个链表清空 |
insert |
在指定位置插入一个或多个元素(三个重载函数) |
swap |
交换两个链表(两个重载) |
unique |
删除相邻重复元素 |
1.list 构造函数
list <int > L0 ; // 空链表
list <int > L1 (9); // 建一个含个默认值是的元素的链表
list <int > L2 (5,1); // 建一个含个元素的链表,值都是
list <int > L3 (L2 ); // 建一个L 2 的 copy 链表
list <int > L4 (L0 .begin (), L0 .end ());// 建一个含 L0 一个区域的元素
2. assign() 分配值,有两个重载
L1. assign ( 4,3); // L1(3,3,3,3)
L1. assign( ++list1.beging(), list2.end()); // L 1(2,3)
3 . operator= 赋值重载运算符
L1 = list1; // L1 (1,2,3)
4. front() 返回第一个元素的引用
int nRet = list1.front() // nRet = 1
5. back() 返回最后一 元素的引用
int nRet = list1.back() // nRet = 3
6. begin() 返回第一个元素的指针(iterator)
it = list1.begin(); // *it = 1
7. end() 返回最后一个元素的 下一位置 的指针(list 为空时end()=begin())
it = list1.end();
--it; // *it = 3
8.rbegin() 返回链表最后一 元素的后向指针(reverse_iterator or const)
list <int >::reverse_iterator it = list1 .rbegin (); // *it = 3
9. rend() 返回链表第一元素的 下一位置 的后向指针
list< int>::reverse_iterator it = list1 .rend(); // *(--riter) = 1
10.push_back() 增加一 元素到链表尾
list1.push_back( 4) // list1(1,2,3, 4 )
11. push_front() 增加一 元素到链表头
list1.push_front( 4) // list1( 4 ,1,2,3)
12. pop_back() 删除链表尾的一个元素
list1.pop_back( ) // list1(1,2)
13.pop_front() 删除链表头 的一 元素
list1.pop_front() // list1(2,3)
14 .clear() 删除所有元素
list1.clear(); // list1 空了,list1.size() = 0
15.erase() 删除 一个元素 或 一个区域的元素 ( 两个重载函数)
list1.erase( list1.begin()); // list1(2,3)
list1.erase( ++list1.begin(),list1.end()); // list1(1)
16. remove() 删除链表中匹配值 的元素( 匹配元素全部删除)
list 对象L1( 4 ,3,5,1, 4 )
L1.remove( 4); // L1(3,5,1);
17.remove_if() 删除条件满足的元素( 遍历一次链表) ,参数为自定义的回调函数
// 小于2 的值删除
bool myFun (const int & value ) { return (value < 2); }
list1.remove_if( myFun ); // list1(3)
18.empty() 判断是否链表为空
bool bRet = L1.empty(); // 若L1 为空,bRet = true ,否则bRet = false 。
19.max_size() 返回链表最大可能长度
list <int >::size_type nMax = list1 .max_size ();// nMax = 1073741823
20 .size() 返回链表中元素个数
list< int>::size_type nRet = list1.size(); // nRet = 3
21.resize() 重新定义链表长度( 两重载函数)
list1.resize(5) // list1 (1,2,3, 0,0 ) 用默认值填补
list1.resize(5,4) // list1 (1,2,3, 4,4 ) 用指定值 填补
22.reverse() 反转链表:
list1.reverse( ); // list1(3,2,1)
23.sort() 对链表排序,默认升序( 可自定义回调函数 )
list 对象L1(4,3,5,1,4)
L1.sort( ); // L1(1,3,4,4,5)
L1.sort( greater <int >() ); // L1(5,4,4,3,1)
24.merge() 合并两个有序链表并使之有序
// 升序
list1.merge(list2); // list1(1,2,3,4,5,6) list2 现为空
// 降序
L1( 3,2,1), L2(6,5,4)
L1.merge(L2, greater <int >() ); // list1(6,5,4,3,2,1) list2 现为空
25.splice() 对两个链表进行结合( 三个重载函数) 结合后第二个链表清空
list1.splice( ++list1.begin(),list2);
// list1(1,4,5,6,2,3) list2 为空
list1.splice( ++list1.begin(),list2,list2.begin());
// list1( 1,4,2,3); list2(5,6)
list1.splice( ++list1.begin(),list2,++list2.begin(),list2.end());
//list1( 1, 5,6, 2,3); list2(4)
26.insert() 在指定位置插入一个或多个元素( 三个重载函数)
list1.insert( ++list1.begin(),9); // list1(1,9,2,3)
list1.insert(list1.begin(),2,9); // list1(9,9,1,2,3);
list1.insert(list1.begin(),list2.begin(),--list2.end());//list1(4,5,1,2,3);
27.swap() 交换两个链表( 两个重载)
list1.swap(list2); // list1 (4 ,5 ,6 ) list2 (1 ,2 ,3 )
28. unique() 删除相邻重复元素
L1( 1, 1 ,4,3,5,1)
L1.unique( ); // L1(1,4,3,5,1)
bool same_integral_part (double first , double second )
{ return ( int (first )==int (second ) ); }
L1.unique( same_integral_part );
例子:
// ------------------------------------------------------------------------- // 文件名 : list1.cpp // 创建者 : 方煜宽 // 邮箱 : [email protected] // 创建时间 : 2010-9-19 15:58 // 功能描述 : STL中的list就是一双向链表,可高效地进行插入删除元素。 // // ------------------------------------------------------------------------- #include " stdafx.h " #include < iostream > #include < list > using namespace std; list < int > g_list1; list < int > g_list2; //////////////////////////////////////////////////////////////////////// // // 初始化全局链表 void InitList() { // push_back()增加一元素到链表尾 g_list1.push_back( 1 ); g_list1.push_back( 2 ); g_list1.push_back( 3 ); // push_front()增加一元素到链表头 g_list2.push_front( 6 ); g_list2.push_front( 5 ); g_list2.push_front( 4 ); } // 输出一个链表 void ShowList(list < int >& listTemp) { // size()返回链表中元素个数 cout << listTemp.size() << endl; for (list < int > ::iterator it = listTemp.begin(); it != listTemp.end(); ++ it) { cout << * it << ' ' ; } cout << endl; } //////////////////////////////////////////////////////////////////////// // // 构造函数,空链表 void constructor_test0() { list < int > listTemp; cout << listTemp.size() << endl; } // 构造函数,建一个含三个默认值是0的元素的链表 void constructor_test1() { list < int > listTemp( 3 ); ShowList(listTemp); } // 构造函数,建一个含五个元素的链表,值都是1 void constructor_test2() { list < int > listTemp( 5 , 1 ); ShowList(listTemp); } // 构造函数,建一个g_list1的copy链表 void constructor_test3() { list < int > listTemp(g_list1); ShowList(listTemp); } // 构造函数,listTemp含g_list1一个区域的元素[_First, _Last) void constructor_test4() { list < int > listTemp(g_list1.begin(), g_list1.end()); ShowList(listTemp); } // assign()分配值,有两个重载 // template <class InputIterator> // void assign ( InputIterator first, InputIterator last ); // void assign ( size_type n, const T& u ); void assign_test() { list < int > listTemp( 5 , 1 ); ShowList(listTemp); listTemp.assign( 4 , 3 ); ShowList(listTemp); listTemp.assign( ++ g_list1.begin(), g_list1.end()); ShowList(listTemp); } // operator= void operator_equality_test() { g_list1 = g_list2; ShowList(g_list1); ShowList(g_list2); } // front()返回第一个元素的引用 void front_test7() { cout << g_list1.front() << endl; } // back()返回最后一元素的引用 void back_test() { cout << g_list1.back() << endl; } // begin()返回第一个元素的指针(iterator) void begin_test() { list < int > ::iterator it1 = g_list1.begin(); cout << *++ it1 << endl; list < int > ::const_iterator it2 = g_list1.begin(); it2 ++ ; // (*it2)++; // *it2 为const 不用修改 cout << * it2 << endl; } // end()返回 [最后一个元素的下一位置的指针] (list为空时end()= begin()) void end_test() { list < int > ::iterator it = g_list1.end(); // 注意是:最后一个元素的下一位置的指针 -- it; cout << * it << endl; } // rbegin()返回链表最后一元素的后向指针 void rbegin_test() { list < int > ::reverse_iterator it = g_list1.rbegin(); for (; it != g_list1.rend(); ++ it) { cout << * it << ' ' ; } cout << endl; } // rend()返回链表第一元素的下一位置的后向指针 void rend_test() { list < int > ::reverse_iterator it = g_list1.rend(); -- it; cout << * it << endl; } // push_back()增加一元素到链表尾 void push_back_test() { ShowList(g_list1); g_list1.push_back( 4 ); ShowList(g_list1); } // push_front()增加一元素到链表头 void push_front_test() { ShowList(g_list1); g_list1.push_front( 4 ); ShowList(g_list1); } // pop_back()删除链表尾的一个元素 void pop_back_test() { ShowList(g_list1); cout << endl; g_list1.pop_back(); ShowList(g_list1); } // pop_front()删除链表头的一元素 void pop_front_test() { ShowList(g_list1); cout << endl; g_list1.pop_front(); ShowList(g_list1); } // clear()删除所有元素 void clear_test() { ShowList(g_list1); g_list1.clear(); ShowList(g_list1); } // erase()删除一个元素或一个区域的元素(两个重载函数) void erase_test() { ShowList(g_list1); g_list1.erase(g_list1.begin()); ShowList(g_list1); cout << endl; ShowList(g_list2); g_list2.erase( ++ g_list2.begin(), g_list2.end()); ShowList(g_list2); } // remove()删除链表中匹配值的元素(匹配元素全部删除) void remove_test() { ShowList(g_list1); g_list1.push_back( 1 ); ShowList(g_list1); g_list1.remove( 1 ); ShowList(g_list1); } bool myFun( const int & value) { return (value < 2 ); } // remove_if()删除条件满足的元素(会遍历一次链表) void remove_if_test() { ShowList(g_list1); g_list1.remove_if(myFun); ShowList(g_list1); } // empty()判断是否链表为空 void empty_test() { list < int > listTemp; if (listTemp.empty()) cout << " listTemp为空 " << endl; else cout << " listTemp不为空 " << endl; } // max_size()返回链表最大可能长度:1073741823 void max_size_test() { list < int > ::size_type nMax = g_list1.max_size(); cout << nMax << endl; } // resize()重新定义链表长度(两重载函数): void resize_test() { ShowList(g_list1); g_list1.resize( 9 ); // 用默认值填补 ShowList(g_list1); cout << endl; ShowList(g_list2); g_list2.resize( 9 , 51 ); // 用指定值填补 ShowList(g_list2); } // reverse()反转链表 void reverse_test() { ShowList(g_list1); g_list1.reverse(); ShowList(g_list1); } // sort()对链表排序,默认升序(两个重载函数) void sort_test() { list < int > listTemp; listTemp.push_back( 9 ); listTemp.push_back( 3 ); listTemp.push_back( 5 ); listTemp.push_back( 1 ); listTemp.push_back( 4 ); listTemp.push_back( 3 ); ShowList(listTemp); listTemp.sort(); ShowList(listTemp); listTemp.sort(greater < int > ()); ShowList(listTemp); } // merge()合并两个升序序链表并使之成为另一个升序. void merge_test1() { list < int > listTemp2; listTemp2.push_back( 3 ); listTemp2.push_back( 4 ); list < int > listTemp3; listTemp3.push_back( 9 ); listTemp3.push_back( 10 ); ShowList(listTemp2); cout << endl; ShowList(listTemp3); cout << endl; listTemp2.merge(listTemp3); ShowList(listTemp2); } bool myCmp ( int first, int second) { return ( int (first) > int (second) ); } // merge()合并两个降序链表并使之成为另一个降序. void merge_test2() { list < int > listTemp2; listTemp2.push_back( 4 ); listTemp2.push_back( 3 ); list < int > listTemp3; listTemp3.push_back( 10 ); listTemp3.push_back( 9 ); ShowList(listTemp2); cout << endl; ShowList(listTemp3); cout << endl; // listTemp2.merge(listTemp3, greater<int>()); // 第二个参数可以是自己定义的函数如下 listTemp2.merge(listTemp3, myCmp); ShowList(listTemp2); } // splice()对两个链表进行结合(三个重载函数),结合后第二个链表清空 // void splice ( iterator position, list<T,Allocator>& x ); // void splice ( iterator position, list<T,Allocator>& x, iterator i ); // void splice ( iterator position, list<T,Allocator>& x, iterator first, iterator last ); void splice_test() { list < int > listTemp1(g_list1); list < int > listTemp2(g_list2); ShowList(listTemp1); ShowList(listTemp2); cout << endl; // listTemp1.splice( ++ listTemp1.begin(), listTemp2); ShowList(listTemp1); ShowList(listTemp2); // listTemp1.assign(g_list1.begin(), g_list1.end()); listTemp2.assign(g_list2.begin(), g_list2.end()); listTemp1.splice( ++ listTemp1.begin(), listTemp2, ++ listTemp2.begin()); ShowList(listTemp1); ShowList(listTemp2); // listTemp1.assign(g_list1.begin(), g_list1.end()); listTemp2.assign(g_list2.begin(), g_list2.end()); listTemp1.splice( ++ listTemp1.begin(), listTemp2, ++ listTemp2.begin(), listTemp2.end()); ShowList(listTemp1); ShowList(listTemp2); } // insert()在指定位置插入一个或多个元素(三个重载函数) // iterator insert ( iterator position, const T& x ); // void insert ( iterator position, size_type n, const T& x ); // template <class InputIterator> // void insert ( iterator position, InputIterator first, InputIterator last ); void insert_test() { list < int > listTemp1(g_list1); ShowList(listTemp1); listTemp1.insert(listTemp1.begin(), 51 ); ShowList(listTemp1); cout << endl; list < int > listTemp2(g_list1); ShowList(listTemp2); listTemp2.insert(listTemp2.begin(), 9 , 51 ); ShowList(listTemp2); cout << endl; list < int > listTemp3(g_list1); ShowList(listTemp3); listTemp3.insert(listTemp3.begin(), g_list2.begin(), g_list2.end()); ShowList(listTemp3); } // swap()交换两个链表(两个重载) void swap_test() { ShowList(g_list1); ShowList(g_list2); cout << endl; g_list1.swap(g_list2); ShowList(g_list1); ShowList(g_list2); } bool same_integral_part ( double first, double second) { return ( int (first) == int (second) ); } // unique()删除相邻重复元素 void unique_test() { list < int > listTemp; listTemp.push_back( 1 ); listTemp.push_back( 1 ); listTemp.push_back( 4 ); listTemp.push_back( 3 ); listTemp.push_back( 5 ); listTemp.push_back( 1 ); list < int > listTemp2(listTemp); ShowList(listTemp); listTemp.unique(); // 不会删除不相邻的相同元素 ShowList(listTemp); cout << endl; listTemp.sort(); ShowList(listTemp); listTemp.unique(); ShowList(listTemp); cout << endl; listTemp2.sort(); ShowList(listTemp2); listTemp2.unique(same_integral_part); ShowList(listTemp2); } // 主函数,下面要测试哪个就把那个注释去掉即可 int _tmain( int argc, _TCHAR * argv[]) { InitList(); // ShowList(g_list1); // ShowList(g_list2); // constructor_test0(); // constructor_test1(); // constructor_test2(); // constructor_test3(); // constructor_test4(); // assign_test(); // operator_equality_test(); // front_test7(); // back_test(); // begin_test(); // end_test(); // rbegin_test(); // rend_test(); // push_back_test(); // push_front_test(); // pop_back_test(); // pop_front_test(); // clear_test(); // erase_test(); // remove_test(); // remove_if_test(); // empty_test(); // max_size_test(); // resize_test(); // reverse_test(); // sort_test(); // merge_test1(); // merge_test2(); // splice_test(); // insert_test(); // swap_test(); // unique_test(); return 0 ; }