谐振电路及品质因数(二)

品质因数介绍

在研究各种谐振电路时,常常涉及到电路的品质因素Q值的问题,那末什么是Q值呢?下面我们作详细的论述。

1是一串联谐振电路,它由电容C、电感L和由电容的漏电阻与电感的线电阻R所组成。此电路的复数阻抗Z为三个 元件的复数阻抗之和。

Z=R+jωL+(-j/ωC)=R+j(ωL-1/ωC) ⑴

上式电阻R是复数的实部,感抗与容抗之差是复数的虚部,虚部我们称之为电抗用X表示, ω是外加信号的角频率。

当X=0时,电路处于谐振状态,此时感抗和容抗相互抵消了,即式⑴中的虚部为零,于是电路中的阻抗最小。因此电流最大,电路此时是一个纯电阻性负载电路,电路中的电压与电流同相。电路在谐振时容抗等于感抗,所以电容和电感上两端的电压有效值必然相等,

电容上的电压有效值UC=I*1/ωC=U/ωCR=QU 品质因素Q=1/ωCR,这里I是电路的总电流。

电感上的电压有效值UL=ωLI=ωL*U/R=QU 品质因素Q=ωL/R

因为:UC=UL 所以Q=1/ωCR=ωL/R

电容上的电压与外加信号电压U之比UC/U= (I*1/ωC)/RI=1/ωCR=Q

感上的电压与外加信号电压U之比UL/U= ωLI/RI=ωL/R=Q

从上面分析可见,电路的品质因素越高,电感或电容上的电压比外加电压越高。

电路的选择性:图1电路的总电流I=U/Z=U/[R2+(ωL-1/ωC)2]1/2=U/[R2+(ωLω0/ω0-ω0/ωCω0)2]1/2 ω0是电路谐振时的角频率。当电路谐振时有:ω0L=1/ω0C

所以I=U/{R2+[ω0L(ω/ω0-ω0/ω)]2}1/2= U/{R2+[R2(ω0L/R)2](ω/ω0-ω0/ω)2}1/2= U/R[1+Q2(ω/ω0-ω0/ω)2]1/2

因为电路谐振时电路的总电流I0=U/R,

所以I=I0/[1+Q2(ω/ω0-ω0/ω)2]1/2有:I/I0=1/[1+Q2(ω/ω0-ω0/ω)2]1/2作此式的函数曲线。设(ω/ω0-ω0/ω)2=Y

  曲线如图2所示。这里有三条曲线,对应三个不同的Q值,其中有Q1>Q2>Q3。从图中可看出当外加信号频率ω偏离电路的谐振频率ω0时, I/I0均小于1。Q值越高在一定的频偏下电流下降得越快,其谐振曲线越尖锐。也就是说电路的选择性是由电路的品质因素Q所决定的,Q值越高选择性越好。

 

选择性

  谐振电路的选择性就是选择有用的电信号的能力。如图9-1-6所示,当R,L,C串联电路中接入许多不同频率的电压信号时,今如调节电路的固有谐振频率 ω0(在此是调节电容C),就能使我们所需要的频率信号(例如ω2)与电路达到谐振,即使ω0=ω2,从而电路中的 电流达到最大值(谐振电流),当电路的Q值很高时,从C两端(或L两端)输出的电压UC(或UL)也就最大;而我们不需要的电信号(例如ω1和ω3的电压)在电路中产生的电流很小,其输出电压当然也小。这就达到了选择有用电信号ω2的目的。显然,电路的Q值越高,频率特性就越尖锐,因而选择性也就越好。

 

一.串联谐振电路:当外来频率加于一串联谐振电路时,它有以下特性:


1.当外加频率等于其谐振频率时其电路阻抗呈纯电阻性,且有最少值,它这个特性在实际应用中叫做陷波器.
2.当外加频率高于其谐振频率时,电路阻抗呈感性,相当于一个电感线圈.
3.当外加频率低于其谐振频率时,这时电路呈容性,相当于一个电容.


  二.并;联谐振电路:当外来频率加于一并联谐振电路时,它有以下特性:


1.当外加频率等于其谐振频率时其电路阻抗呈纯电阻性,且有最大值,它这个特性在实际应用中叫做选频电路.
2.当外加频率高于其谐振频率时,电路阻抗呈容性,相当于一个电容.
3.当外加频率低于其谐振频率时,这时电路呈感性,相当于一个电感线圈.
所以当串联或并联谐振电路不是调节在信号频率点时,信号通过它将会产生相移.(即相位失真)

谐振电路及品质因数(二)_第1张图片

你可能感兴趣的:(谐振电路及品质因数(二))