题目链接:点击打开链接
思路:
最简单的思路是, 维护一棵平衡树, 以单价作为键值, 维护一个结点个数的信息。 然后类似寻找第K小的方法找到第n个小的价值处, 顺便维护总价值, 判断是否happy。
然后就是删除操作。 我们从新从根结点开始, 沿路删除可以删除的子树就行了。 由于每次删除都是删除的叶子结点处, 所以不需要旋转操作。
细节参见代码:
#include <cstdio> #include <cstring> #include <algorithm> #include <iostream> #include <string> #include <vector> #include <stack> #include <bitset> #include <cstdlib> #include <cmath> #include <set> #include <list> #include <deque> #include <map> #include <queue> #define Max(a,b) ((a)>(b)?(a):(b)) #define Min(a,b) ((a)<(b)?(a):(b)) using namespace std; typedef long long ll; typedef long double ld; const ld eps = 1e-9, PI = 3.1415926535897932384626433832795; const int mod = 1000000000 + 7; const int INF = 0x3f3f3f3f; const int seed = 131; const ll INF64 = ll(1e18); ll n, c; struct node { node *ch[2]; int r; // 左右子树 ll s, tt, t, ss; //ss是该结点的物品数,s是结点总数,tt是单价,t是总价, r是优先级 node(ll tt=0, ll ss=0): tt(tt), ss(ss) { ch[0] = ch[1] = NULL; s = ss; t = tt * ss; r = rand(); } ll cmp(ll x) const { if(x == tt) return -1; return x < tt ? 0 : 1; } void maintain() { s = ss; t = tt * ss; if(ch[0] != NULL) s += ch[0]->s, t += ch[0]->t; //维护这个结点下的所有节点数, 维护一个结点下的总价钱 if(ch[1] != NULL) s += ch[1]->s, t += ch[1]->t; } } *g; void rotate(node* &o, ll d) { node* k = o->ch[d^1]; //旋转, 使得优先级满足堆的意义 o->ch[d^1] = k->ch[d]; k->ch[d] = o; o->maintain(); k->maintain(); o = k; } void insert(node* &o, ll x, ll s) { if(o == NULL) o = new node(x, s); else { int d = (x < o->tt ? 0 : 1); insert(o->ch[d], x, s); if(o->ch[d]->r > o->r) rotate(o, d^1); } o->maintain(); } void removetree(node* &x) { if(x->ch[0] != NULL) removetree(x->ch[0]); if(x->ch[1] != NULL) removetree(x->ch[1]); delete x; x = NULL; } void _remove(node* &gg, node* &o, ll k, ll sum) { if(o == NULL || k <= 0 || k > o->s) return ; ll s = (o->ch[0] != NULL ? o->ch[0]->s : 0); //s是左子树的元素个数 ll hehe = (o->ch[0] != NULL ? o->ch[0]->t : 0); if(k <= s) { _remove(o, o->ch[0], k, sum); o->maintain(); } else if(k <= s + (o->ss)) { ll tot = sum; //这k件最便宜的物品的总价 if(o->ch[0] != NULL) tot += o->ch[0]->t; tot += o->tt * (k - s); o->s -= k; o->ss -= (k - s); o->t -= tot - sum; if(o->ch[0] != NULL) removetree(o->ch[0]); } else { ll hehe2 = (o->ss * o->tt); ll hehe3 = o->ss; node* u = o; if(o->ch[0] != NULL) removetree(o->ch[0]); o = o->ch[1]; delete u; _remove(gg, o, k-s-hehe3, sum + hehe + hehe2); o->maintain(); } o->maintain(); } bool solve(node* o, ll k, ll sum) { if(o == NULL || k <= 0 || k > o->s) return false; ll s = (o->ch[0] != NULL ? o->ch[0]->s : 0); //s是左子树的元素个数 ll hehe = (o->ch[0] != NULL ? o->ch[0]->t : 0); if(k <= s) { int ok = solve(o->ch[0], k, sum); o->maintain(); return ok; } else if(k <= s + (o->ss)) { ll tot = sum; //这k件最便宜的物品的总价 if(o->ch[0] != NULL) tot += o->ch[0]->t; tot += o->tt * (k - s); if(tot > c) return false; else return true; } else { int ok = solve(o->ch[1], k-s-(o->ss), sum + hehe + (o->ss * o->tt)); o->maintain(); return ok; } o->maintain(); } char s[100]; int main() { g = NULL; while(~scanf("%s%I64d%I64d",s, &n, &c)) { if(s[0] == 'A') { insert(g, c, n); } else { if(solve(g, n, 0)) _remove(g, g, n, 0), printf("HAPPY\n"); else printf("UNHAPPY\n"); } } return 0; }