You have an array of positive integers a[1], a[2], ..., a[n] and a set of bad prime numbers b1, b2, ..., bm. The prime numbers that do not occur in the set b are considered good. The beauty of array a is the sum , where function f(s) is determined as follows:
You are allowed to perform an arbitrary (probably zero) number of operations to improve array a. The operation of improvement is the following sequence of actions:
What is the maximum beauty of the array you can get?
The first line contains two integers n and m (1 ≤ n, m ≤ 5000) showing how many numbers are in the array and how many bad prime numbers there are.
The second line contains n space-separated integers a[1], a[2], ..., a[n] (1 ≤ a[i] ≤ 109) — array a. The third line contains m space-separated integers b1, b2, ..., bm (2 ≤ b1 < b2 < ... < bm ≤ 109) — the set of bad prime numbers.
Print a single integer — the answer to the problem.
5 2 4 20 34 10 10 2 5
-2
4 5 2 4 8 16 3 5 7 11 17
10
Note that the answer to the problem can be negative.
The GCD(x1, x2, ..., xk) is the maximum positive integer that divides each xi.
这题有点神啊……题意看了好久都没太理解,又研究队友那时过的代码,也好久了才懂什么意思,太神了,以前知道怎么分解一个数为素数之积,不过没写过代码,这题就作为模板了吧……
#include <iostream> #include <cstdio> #include <fstream> #include <algorithm> #include <cmath> #include <deque> #include <vector> #include <list> #include <queue> #include <string> #include <cstring> #include <map> #include <stack> #include <set> #define PI acos(-1.0) #define mem(a,b) memset(a,b,sizeof(a)) #define sca(a) scanf("%d",&a) #define pri(a) printf("%d\n",a) #define MM 1000000000 #define MN 5005 #define INF 10000007 typedef long long ll; using namespace std; int n,m,bad[MN],a[MN],is[MN*200],ans,prime[MN*2],gcd[MN]; void get_prime() { int i,j,k=sqrt(MM+0.5); for(i=2;i<=k;i++) if(!is[i]) { prime[ans++]=i; for(j=i*i;j<=k;j+=i) is[j]=1; } } int fenjie(int x) { int cnt=0,i,t,pos; for(i=0;i<ans&&x>1;i++) if(!(x%prime[i])) { t=0; while(!(x%prime[i])) x/=prime[i],t++; pos=lower_bound(bad,bad+m,prime[i])-bad; if(pos<m&&bad[pos]==prime[i]) cnt-=t; else cnt+=t; } if(x>1) //说明x比prime中最大的数还大,那么就在bad里面找了 { pos=lower_bound(bad,bad+m,x)-bad; if(pos<m&&bad[pos]==x) cnt--; else cnt++; } return cnt; } int main() { ll sum=0; int i,j; get_prime(); scanf("%d%d%d",&n,&m,&a[0]); gcd[0]=a[0]; for(i=1;i<n;i++) sca(a[i]),gcd[i]=__gcd(gcd[i-1],a[i]); for(i=0;i<m;i++) sca(bad[i]); for(i=0;i<n;i++) sum+=fenjie(a[i]); for(i=n-1;i>=0;i--) if(gcd[i]>0) { int d=fenjie(gcd[i]); if(d<0) { for(j=0;j<=i;j++) a[j]/=gcd[i],gcd[j]/=gcd[i]; sum-=d*(i+1); } } cout<<sum<<endl; return 0; }