题目链接:点击打开链接
白书例题P369
注意的就是即使这队接下来全胜也是无法赢,要直接判掉。
#include<stdio.h> #include<string.h> #include<iostream> #include<math.h> #include<algorithm> #include<queue> #include<vector> using namespace std; #define ll int #define N 700 #define M 20000 #define inf 107374182 #define inf64 1152921504606846976 struct Edge{ ll from, to, cap, nex; }edge[M*2];//注意这个一定要够大 不然会re 还有反向弧 ll head[N], edgenum; void add(ll u, ll v, ll cap, ll rw = 0){ //如果是有向边则:add(u,v,cap); 如果是无向边则:add(u,v,cap,cap); Edge E = { u, v, cap, head[u]}; edge[ edgenum ] = E; head[u] = edgenum ++; Edge E2= { v, u, rw, head[v]}; edge[ edgenum ] = E2; head[v] = edgenum ++; } ll sign[N]; bool BFS(ll from, ll to){ memset(sign, -1, sizeof(sign)); sign[from] = 0; queue<ll>q; q.push(from); while( !q.empty() ){ ll u = q.front(); q.pop(); for(ll i = head[u]; i!=-1; i = edge[i].nex) { ll v = edge[i].to; if(sign[v]==-1 && edge[i].cap) { sign[v] = sign[u] + 1, q.push(v); if(sign[to] != -1)return true; } } } return false; } ll Stack[N], top, cur[N]; ll Dinic(ll from, ll to){ ll ans = 0; while( BFS(from, to) ) { memcpy(cur, head, sizeof(head)); ll u = from; top = 0; while(1) { if(u == to) { ll flow = inf, loc;//loc 表示 Stack 中 cap 最小的边 for(ll i = 0; i < top; i++) if(flow > edge[ Stack[i] ].cap) { flow = edge[Stack[i]].cap; loc = i; } for(ll i = 0; i < top; i++) { edge[ Stack[i] ].cap -= flow; edge[Stack[i]^1].cap += flow; } ans += flow; top = loc; u = edge[Stack[top]].from; } for(ll i = cur[u]; i!=-1; cur[u] = i = edge[i].nex)//cur[u] 表示u所在能增广的边的下标 if(edge[i].cap && (sign[u] + 1 == sign[ edge[i].to ]))break; if(cur[u] != -1) { Stack[top++] = cur[u]; u = edge[ cur[u] ].to; } else { if( top == 0 )break; sign[u] = -1; u = edge[ Stack[--top] ].from; } } } return ans; } void init(){memset(head,-1,sizeof head);edgenum = 0;} int win[30], lose[30], lef[30][30], id[30][30], tot; int n; vector<int>ans; bool ok(int x){ init(); int from = 0, to = tot; int all = win[x]; for(int i = 1; i <= n; i++) all += lef[i][x]; int flow = 0; for(int i = 1; i <= n; i++) for(int j = i+1; j <= n; j++) if(lef[i][j]) { add(from, id[i][j], lef[i][j]); add(id[i][j], i, inf); add(id[i][j], j, inf); flow += lef[i][j]; } for(int i = 1; i <= n; i++) { if(win[i] > all)return false; else if(win[i] < all) add(i, to, all - win[i]); } return Dinic(from, to) == flow; } void solve(){ for(int i = 1; i <= n; i++) if(ok(i)) ans.push_back(i); } void input(){ scanf("%d", &n); for(int i = 1; i <= n; i++)scanf("%d %d", &win[i], &lose[i]); tot = n+1; for(int i = 1; i <= n; i++) for(int j = 1; j <= n; j++) scanf("%d", &lef[i][j]); tot = n+1; for(int i = 1; i <= n; i++) for(int j = i+1; j <= n; j++) id[i][j] = tot++; } int main(){ int T;scanf("%d",&T); while(T--){ input(); ans.clear(); solve(); for(int i = 0; i < ans.size(); i++) printf("%d%c", ans[i], i==(int)ans.size()-1?'\n':' '); } return 0; }