- rstudio检验多重共线性代码
十三木
机器学习人工智能
在Rstudio中,你可以使用vif()函数来检验多重共线性。例如,假设你已经建立了一个线性回归模型,并将它保存在一个变量model中。你可以使用如下代码来检验多重共线性:library(car)vif(model)这会返回每个自变量的方差膨胀因子(VIF),如果VIF较大(通常超过5或10),则可能存在多重共线性。你可以使用这些信息来确定是否需要删除某些自变量或使用其他方法来处理多重共线性。
- 【机器学习】主成分分析法(PCA)
若兰幽竹
机器学习机器学习信息可视化人工智能
【机器学习】主成分分析法(PCA)一、摘要二、主成分分析的基本概念三、主成分分析的数学模型五、主成分分析法目标函数公式推导(`梯度上升法`求解目标函数)六、梯度上升法求解目标函数第一个主成分七、求解前n个主成分及PCA在数据预处理中的处理步骤(后续实现)一、摘要本文主要讲述了主成分分析法(PCA)的原理和应用。PCA通过选择最重要的特征,将高维数据映射到低维空间,同时保持数据间的关系,实现降维和去
- 大型语言模型:让Python更聪明的秘密武器
qq_39605374
语言模型python数据库Python
Python是一种广泛使用的编程语言,而大型语言模型则为Python开发者提供了一个强大的工具。大型语言模型可以理解人类语言,并生成具有逻辑和连贯性的文本。它能够回答用户的问题、提供解决方案,并帮助开发者提高他们的编程技能。让我们来探索一下如何使用大型语言模型作为Python编程的秘密武器。大型语言模型可以通过使用Python编写的API进行访问。下面是一个简单的示例,演示了如何使用Python与
- Python 数据分析实战:电动汽车行业发展态势与市场策略洞察
萧十一郎@
pythonpython数据分析开发语言
目录一、案例背景二、代码实现2.1数据收集与导入2.2数据探索性分析2.3数据清洗2.4数据分析2.4.1市场规模与增长趋势2.4.2消费者需求分析2.4.3企业竞争格局2.4.4政策影响分析2.4.5构建消费者购买意愿预测模型三、主要的代码难点解析3.1数据收集与导入3.2数据清洗-缺失值处理3.3数据清洗-异常值处理3.4数据分析-消费者需求分析3.5数据分析-构建消费者购买意愿预测模型四、可
- C++学习笔记:函数重载及函数模板
etp_
c++学习笔记
函数重载默认参数能让你使用不同数目的参数调用同一个函数,而函数多态(函数重载)能让你使用多个同名函数。----一般完成类似的工作,但一定使用不同的参数列表(函数特征标)。下面定义一组原型如下的print()函数voidprint(constchar*str,intwidth);voidprint(doubled,intwidth);voidprint(longl,intwidth);编译器根据参数
- Git 分支使用规范全解(附项目示例)
滴答滴答滴嗒滴
开发Ai入门指南gitelasticsearch大数据个人开发
Git分支使用规范全解(附项目示例)本文结合实际项目开发,详细讲解如何在多人协作中使用Git分支,包括main、develop、feature/*、bugfix/*、release/*、hotfix/*等分支类型。场景背景:开发一个“智能垃圾分类系统”目标是开发一套运行于边缘设备上的垃圾识别系统,使用AI算法模型识别投放物,并分类投放,同时配有后台管理页面。分支说明与实际应用示例main分支(生产
- GPT-4o mini小型模型具备卓越的文本智能和多模态推理能力
FlowUs息流使用宝典
GPT-4omini
GPT-4omini是首个应用OpenAI指令层次结构方法的模型,这有助于增强模型抵抗越狱、提示注入和系统提示提取的能力。这使得模型的响应更加可靠,并有助于在大规模应用中更安全地使用。GPT-4omini在学术基准测试中,无论是在文本智能还是多模态推理方面,都超越了GPT-3.5Turbo和其他小型模型,并支持与GPT-4o相同的语言范围。它在函数调用方面也表现出色,这使开发者能够构建应用程序来从
- Dify知识库构建流程及示例
cqbelt
ai笔记AI应用
总体流程1.数据预处理清洗:去除噪声、特殊字符、标准化格式。分词/标记化:拆分文本为单词或子词单元(如使用Tokenizer)。元数据关联:附加来源、时间戳等信息,支持多维度检索。2.文本分块固定长度分块:按字符或Token数切分,简单高效。语义分块:基于句子边界或主题分割(如NLP模型识别段落主旨)。重叠策略:相邻块间部分重叠,避免上下文断裂。3.向量化(Embedding)嵌入模型:调用预训练
- Qt动态设置样式,实现样式实时切换
水瓶丫头站住
样式表Qtqt开发语言样式设置
文章目录概要插件实现界面核心代码设置样式扩展导入样式导出样式概要最近需要设计界面,但是使用Qt的Designer只能看到每个界面单独的样式,程序中有些事需要主界面调用进行组合的界面,因此需要写一个插件Ui可以直接输入样式内容,进行实时设置,查看样式效果。插件实现界面应用样式前应用样式后核心代码设置样式voidSetSheetStyle::on_pbtn_Apply_clicked(){qApp->
- JAVA:网络编程 Socket 的技术指南
拾荒的小海螺
JAVAjava网络开发语言
1、简述JavaNIO(Non-blockingI/O)是一种基于通道(Channel)和缓冲区(Buffer)的I/O模型,支持非阻塞通信和多路复用,适合高并发场景。相比传统的阻塞I/O(BIO),NIO更高效,因为它避免了线程被阻塞,降低了系统资源消耗。代码样例:https://gitee.com/lhdxhl/springboot-example.git核心组件:Channel(通道):数据
- 深入探索 PyTorch 在语音识别中的应用
Zoro|
PyTorchDeepLearning机器学习pytorch语音识别人工智能
深入探索PyTorch在语音识别中的应用在本篇博客中,我将分享如何使用PyTorch进行语音识别任务,重点围绕环境配置、数据预处理、特征提取、模型设计以及模型比较展开。本文基于最近一次机器学习作业(HW2)的任务内容,任务目标是对语音信号进行逐帧音素预测,从而完成多类别分类任务。一、介绍任务背景任务目标:利用深度神经网络对语音信号进行逐帧音素预测。音素定义:音素是语音中能够区分单词的最小语音单位。
- MNIST数据集&手写数字识别
Zoro|
kerastensorflow人工智能机器学习
TensorFlow是一个开源的机器学习框架,由Google开发并发布。它提供了一种基于数据流图的编程模型,用于构建和训练机器学习模型。TensorFlow的核心概念是张量(Tensor)和流图(Graph)。张量是TensorFlow中的基本数据单位,可以理解为多维数组,可以是标量、向量、矩阵或更高维度的数组。流图是由一系列操作(Operation)和张量组成的。操作定义了计算和转换张量的方式。
- 光伏储能直流系统MATLAB仿真(PV光伏阵列+Boost DCDC变换器+负载+双向DCDC变换器+锂离子电池系统)
yyds_2201
matlab开发语言
欢迎来到本博客❤️❤️博主优势:博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。⛳️座右铭:行百里者,半于九十。本文目录如下:目录1概述光伏储能直流系统MATLAB仿真研究一、引言二、光伏储能直流系统的基本构成(一)PV光伏阵列(二)BoostDC/DC变换器(三)负载(四)双向DC/DC变换器(五)锂离子电池系统(六)控制模块(七)观测模块三、MATLAB仿真模型建立(一)光伏阵列模型(二)B
- 算法模型从入门到起飞系列——八大排序算法(二)
小小面试官
算法模型算法排序算法java
上篇文章详细的描述了四种简单的排序算法及其优化的一些方案,其实比起基本的排序算法,我觉得学习者更应该掌握优化后的排序算法甚至希望可以在评论区上看到更多不同的解法,只要是自己去深入研究的,都可以放到评论区一起探讨甚至给博主纠正。下面就是要详细刨析另外四种不常见的排序算法,性能更高,但是其实真正的使用场景偏少。文章目录一、常见八大排序算法性能对比二、归并排序(MergeSort)2.1归并排序核心思想
- Linux运维技术之Linux云计算架构
极客事纪
Linux《Linux一学就会》程序员linux运维服务器
我以下图为基础,说明Linux的架构(architecture)。最内层是硬件,最外层是用户常用的应用,比如说firefox浏览器,evolution查看邮件,一个计算流体模型等等。硬件是物质基础,而应用提供服务。但在两者之间,还要经过一番周折。还记得Linux启动。Linux首先启动内核(kernel),内核是一段计算机程序,这个程序直接管理管理硬件,包括CPU、内存空间、硬盘接口、网络接口等等
- Gymnasium学习笔记
songyuc
gymnasium
1.Customwrapper[doc]1.1reset()方法重写说明重写函数模板:defreset(self,**kwargs):obs=super().reset(**kwargs)...returnobs1.1.1签名解释Deepseek-r1-Cursor:reset()方法的定义如下:defreset(self,*,seed=None,options=None):...注意参数前的星号
- 24B参数模型碾压gpt4o-mini!推理速度超快!vLLM本地部署Mistral-Small 3.1+全方位测试多模态大模型!超越Gemma3.1,最适合企业项目的大模型!中文OCR能力也不弱
AI超元域
ocr人工智能aiAI编程aigc
本篇笔记所对应的视频https://www.bilibili.com/video/BV1Q9XLYiEwD/MistralAI最新推出的MistralSmall3.1模型无疑是近期科技界的一大亮点。这款由法国AI实验室MistralAI开发的开源多模态模型,以其卓越的性能和灵活性,为开发者、企业和研究人员带来了全新的可能性。凭借24B参数、对文本与图像的处理能力,以及在多个关键指标上的突破,Mis
- laravel基础
m0_65977885
lavarel
#laravel基础###一、MVC设计模式在php的的主流框架中,大多都采用MVC的设计模式,它可以将代码解耦,让视图代码和逻辑代码分开编写,为后期的维护带来了极大的便利。**MVC是模型(model)、视图(view)、控制器(controller)是组合**,它表示将软件系统分成3个核心部分。-模型model,用于数据处理-视图view,用于显示数据-控制器controller,接收用户请求
- 【从零开始学习计算机科学】软件工程(四)结构化需求分析 与 面向对象需求分析
贫苦游商
学习软件工程需求分析ER图DFD数据字典数据流图
【从零开始学习计算机科学】软件工程(四)结构化需求分析与面向对象需求分析结构化需求分析数据模型E-R图基于E-R图的建模过程功能模型分层DFD简介基于DFD的建模原则DFD建模流程DFD的建模中的核心过程分层DFD的改进DFD建模中的注意事项行为模型STD建模的过程数据字典结构化分析总结面向对象需求分析OOAOA的过程时序图状态图面向对象需求建模总结结构化需求分析结构化分析(SA,Structur
- Flink实践:通过Flink SQL进行SFTP文件的读写操作
kkk1622245
flinksql大数据
在大数据处理领域,ApacheFlink出类拔萃,它是一个高性能、易扩展、用于处理有界和无界数据流的分布式处理引擎。FlinkSQL是ApacheFlink提供的一种声明式API,允许开发者以SQL的形式,轻松实现复杂的数据流和批处理分析。本文将重点探讨如何通过FlinkSQL来实现对SFTP文件的读写操作,这是在实际应用中经常遇到的一种场景。Flink与SFTP文件的读写在很多实际应用场景中,数
- Dyn-VQA:含1452动态问题的视觉问答数据集,需灵活提供知识检索方案,查询、工具与检索时间皆可变。
数据集
2024-11-05,由阿里巴巴集团创建Dyn-VQA数据集,它包含三种类型的“动态”问题,需要复杂的知识检索策略,这些问题的查询、工具和时间都是可变的。这个数据集的创建对于推动mRAG研究和解决现有VQA数据集无法充分反映启发式mRAGs在获取复杂知识方面的刚性问题具有重要意义。数据集地址:Dyn-VQA|多模态检索数据集|自然语言处理数据集一、研究背景:在多模态大型语言模型(MLLMs)中,解
- 深度学习五大模型:CNN、Transformer、BERT、RNN、GAN详细解析
深度学习
卷积神经网络(ConvolutionalNeuralNetwork,CNN)原理:CNN主要由卷积层、池化层和全连接层组成。卷积层通过卷积核在输入数据上进行卷积运算,提取局部特征;池化层则对特征图进行下采样,降低特征维度,同时保留主要特征;全连接层将特征图展开为一维向量,并进行分类或回归计算。CNN利用卷积操作实现局部连接和权重共享,能够自动学习数据中的空间特征。适用场景:广泛应用于图像处理相关的
- 算力技术创新驱动多场景应用演进
智能计算研究中心
其他
内容概要算力技术创新正成为数字经济时代的基础性驱动力,从异构计算架构的多元融合到量子计算的颠覆性突破,技术演进不断突破物理与算法的双重边界。在工业互联网场景中,边缘计算通过分布式节点实现毫秒级响应,支撑智能制造产线的实时控制;智能安防系统依托深度学习模型与流计算技术,完成海量视频数据的动态解析;而科学计算领域通过分布式计算与模型压缩技术,将基因测序、气候模拟等复杂任务的效率提升至新量级。值得注意的
- DeepSeek高能低耗AI创作突破
智能计算研究中心
其他
内容概要随着人工智能技术向垂直领域加速渗透,生成式模型的应用边界正经历革命性拓展。DeepSeek系列产品通过670亿参数混合专家架构,构建起覆盖学术研究、内容创作与编程开发的多模态解决方案。该架构融合视觉语言理解与多语言处理能力,在保持高响应速度的同时,显著降低算力消耗,其单位计算成本仅为同类产品的三分之一。值得关注的是,系统搭载的DeepSeekProver学术引擎可自动生成文献综述框架,而D
- AI模型技术前沿与跨场景应用实践
智能计算研究中心
其他
内容概要当前AI模型技术正呈现多维度突破与跨领域融合的特征。从技术演进角度看,可解释性模型与量子计算框架的协同发展正在突破传统黑箱限制,而联邦学习、自适应优化等技术则为复杂场景建模提供了新的方法论支撑。应用层面,TensorFlow与PyTorch框架在医疗影像诊断、金融时序预测等领域的实战案例,验证了深度学习模型在垂直行业的泛化能力。值得关注的是,工具链整合已成为技术落地的关键环节,MXNet与
- 医疗影像联邦学习可解释性算法研究
智能计算研究中心
其他
内容概要医疗影像分析领域的联邦学习技术正面临数据隐私保护与模型可解释性的双重挑战。本研究以跨机构医疗影像协作场景为核心,系统性探讨联邦学习框架下可解释性算法的创新路径,重点解决医疗AI模型在分布式训练中的透明度缺失问题。通过引入动态特征选择机制与可解释性注意力模块,算法在保持数据本地化处理的同时,实现了关键病灶特征的跨域关联与可视化解析。研究同步整合自动化数据增强流程与多维度评估指标(如F1值、召
- 未来5年AI人工智能与信息技术领域发展趋势
海宁不掉头发
人工智能软件工程人工智能人工智能软件工程笔记chatgpt
未来五年人工智能与信息技术领域发展趋势深度解析一、人工智能与神经网络技术的突破路径(一)算法架构的范式革新深度神经网络正经历从量变到质变的演进。以Transformer为核心的序列建模技术持续迭代,字节跳动云雀模型通过动态结构优化,在保持语言理解能力的同时将参数量压缩至GPT-4的1/10,推理速度提升3倍。更值得关注的是类脑计算的突破,中国科学院自动化研究所提出"基于内生复杂性"的类脑神经元模型
- C++核心编程手册
易方达蓝筹
Cor计算机网络c++开发语言后端
C++核心编程本阶段主要针对C++面向对象编程技术做详细讲解,探讨C++中的核心和精髓。1内存分区模型C++程序在执行时,将内存大方向划分为4个区域代码区:存放函数体的二进制代码,由操作系统进行管理的全局区:存放全局变量和静态变量以及常量栈区:由编译器自动分配释放,存放函数的参数值,局部变量等堆区:由程序员分配和释放,若程序员不释放,程序结束时由操作系统回收内存四区意义:不同区域存放的数据,赋予不
- AI生成视频是什么,效果如何,影响哪些行业?
程序员小麦
人工智能AI作画
有个读者深夜问了我一个问题,让我思考了一个深夜。一年前,我写过一篇文章叫《我可能要给鼓吹AI的那些人,浇盆凉水了》。当时ChatGPT很火,整个网络都把AI吹上了天。我则唱反调,因为我就处在这个行业的底层,可谓知冷知热。不过,我当时并没有否定AI,只是表达AI并没有传说的那般无敌,谈不上让各行各业纷纷失业。首先,AI的门槛很高,基本是头部企业的专属,距离普通大众还是很远。另外,通用模型想要落地,必
- 融合AMD与NVIDIA GPU集群的MLOps:异构计算环境中的分布式训练架构实践
在深度学习的背景下,NVIDIA的CUDA与AMD的ROCm框架缺乏有效的互操作性,导致基础设施资源利用率显著降低。随着模型规模不断扩大而预算约束日益严格,2-3年更换一次GPU的传统方式已不具可持续性。但是Pytorch的最近几次的更新可以有效利用异构计算集群,实现对所有可用GPU资源的充分调度,不受制于供应商限制。本文将深入探讨如何混合AMD/NVIDIAGPU集群以支持PyTorch分布式训
- [黑洞与暗粒子]没有光的世界
comsci
无论是相对论还是其它现代物理学,都显然有个缺陷,那就是必须有光才能够计算
但是,我相信,在我们的世界和宇宙平面中,肯定存在没有光的世界....
那么,在没有光的世界,光子和其它粒子的规律无法被应用和考察,那么以光速为核心的
&nbs
- jQuery Lazy Load 图片延迟加载
aijuans
jquery
基于 jQuery 的图片延迟加载插件,在用户滚动页面到图片之后才进行加载。
对于有较多的图片的网页,使用图片延迟加载,能有效的提高页面加载速度。
版本:
jQuery v1.4.4+
jQuery Lazy Load v1.7.2
注意事项:
需要真正实现图片延迟加载,必须将真实图片地址写在 data-original 属性中。若 src
- 使用Jodd的优点
Kai_Ge
jodd
1. 简化和统一 controller ,抛弃 extends SimpleFormController ,统一使用 implements Controller 的方式。
2. 简化 JSP 页面的 bind, 不需要一个字段一个字段的绑定。
3. 对 bean 没有任何要求,可以使用任意的 bean 做为 formBean。
使用方法简介
- jpa Query转hibernate Query
120153216
Hibernate
public List<Map> getMapList(String hql,
Map map) {
org.hibernate.Query jpaQuery = entityManager.createQuery(hql);
if (null != map) {
for (String parameter : map.keySet()) {
jp
- Django_Python3添加MySQL/MariaDB支持
2002wmj
mariaDB
现状
首先,
[email protected] 中默认的引擎为 django.db.backends.mysql 。但是在Python3中如果这样写的话,会发现 django.db.backends.mysql 依赖 MySQLdb[5] ,而 MySQLdb 又不兼容 Python3 于是要找一种新的方式来继续使用MySQL。 MySQL官方的方案
首先据MySQL文档[3]说,自从MySQL
- 在SQLSERVER中查找消耗IO最多的SQL
357029540
SQL Server
返回做IO数目最多的50条语句以及它们的执行计划。
select top 50
(total_logical_reads/execution_count) as avg_logical_reads,
(total_logical_writes/execution_count) as avg_logical_writes,
(tot
- spring UnChecked 异常 官方定义!
7454103
spring
如果你接触过spring的 事物管理!那么你必须明白 spring的 非捕获异常! 即 unchecked 异常! 因为 spring 默认这类异常事物自动回滚!!
public static boolean isCheckedException(Throwable ex)
{
return !(ex instanceof RuntimeExcep
- mongoDB 入门指南、示例
adminjun
javamongodb操作
一、准备工作
1、 下载mongoDB
下载地址:http://www.mongodb.org/downloads
选择合适你的版本
相关文档:http://www.mongodb.org/display/DOCS/Tutorial
2、 安装mongoDB
A、 不解压模式:
将下载下来的mongoDB-xxx.zip打开,找到bin目录,运行mongod.exe就可以启动服务,默
- CUDA 5 Release Candidate Now Available
aijuans
CUDA
The CUDA 5 Release Candidate is now available at http://developer.nvidia.com/<wbr></wbr>cuda/cuda-pre-production. Now applicable to a broader set of algorithms, CUDA 5 has advanced fe
- Essential Studio for WinRT网格控件测评
Axiba
JavaScripthtml5
Essential Studio for WinRT界面控件包含了商业平板应用程序开发中所需的所有控件,如市场上运行速度最快的grid 和chart、地图、RDL报表查看器、丰富的文本查看器及图表等等。同时,该控件还包含了一组独特的库,用于从WinRT应用程序中生成Excel、Word以及PDF格式的文件。此文将对其另外一个强大的控件——网格控件进行专门的测评详述。
网格控件功能
1、
- java 获取windows系统安装的证书或证书链
bewithme
windows
有时需要获取windows系统安装的证书或证书链,比如说你要通过证书来创建java的密钥库 。
有关证书链的解释可以查看此处 。
public static void main(String[] args) {
SunMSCAPI providerMSCAPI = new SunMSCAPI();
S
- NoSQL数据库之Redis数据库管理(set类型和zset类型)
bijian1013
redis数据库NoSQL
4.sets类型
Set是集合,它是string类型的无序集合。set是通过hash table实现的,添加、删除和查找的复杂度都是O(1)。对集合我们可以取并集、交集、差集。通过这些操作我们可以实现sns中的好友推荐和blog的tag功能。
sadd:向名称为key的set中添加元
- 异常捕获何时用Exception,何时用Throwable
bingyingao
用Exception的情况
try {
//可能发生空指针、数组溢出等异常
} catch (Exception e) {
 
- 【Kafka四】Kakfa伪分布式安装
bit1129
kafka
在http://bit1129.iteye.com/blog/2174791一文中,实现了单Kafka服务器的安装,在Kafka中,每个Kafka服务器称为一个broker。本文简单介绍下,在单机环境下Kafka的伪分布式安装和测试验证 1. 安装步骤
Kafka伪分布式安装的思路跟Zookeeper的伪分布式安装思路完全一样,不过比Zookeeper稍微简单些(不
- Project Euler
bookjovi
haskell
Project Euler是个数学问题求解网站,网站设计的很有意思,有很多problem,在未提交正确答案前不能查看problem的overview,也不能查看关于problem的discussion thread,只能看到现在problem已经被多少人解决了,人数越多往往代表问题越容易。
看看problem 1吧:
Add all the natural num
- Java-Collections Framework学习与总结-ArrayDeque
BrokenDreams
Collections
表、栈和队列是三种基本的数据结构,前面总结的ArrayList和LinkedList可以作为任意一种数据结构来使用,当然由于实现方式的不同,操作的效率也会不同。
这篇要看一下java.util.ArrayDeque。从命名上看
- 读《研磨设计模式》-代码笔记-装饰模式-Decorator
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.io.BufferedOutputStream;
import java.io.DataOutputStream;
import java.io.FileOutputStream;
import java.io.Fi
- Maven学习(一)
chenyu19891124
Maven私服
学习一门技术和工具总得花费一段时间,5月底6月初自己学习了一些工具,maven+Hudson+nexus的搭建,对于maven以前只是听说,顺便再自己的电脑上搭建了一个maven环境,但是完全不了解maven这一强大的构建工具,还有ant也是一个构建工具,但ant就没有maven那么的简单方便,其实简单点说maven是一个运用命令行就能完成构建,测试,打包,发布一系列功
- [原创]JWFD工作流引擎设计----节点匹配搜索算法(用于初步解决条件异步汇聚问题) 补充
comsci
算法工作PHP搜索引擎嵌入式
本文主要介绍在JWFD工作流引擎设计中遇到的一个实际问题的解决方案,请参考我的博文"带条件选择的并行汇聚路由问题"中图例A2描述的情况(http://comsci.iteye.com/blog/339756),我现在把我对图例A2的一个解决方案公布出来,请大家多指点
节点匹配搜索算法(用于解决标准对称流程图条件汇聚点运行控制参数的算法)
需要解决的问题:已知分支
- Linux中用shell获取昨天、明天或多天前的日期
daizj
linuxshell上几年昨天获取上几个月
在Linux中可以通过date命令获取昨天、明天、上个月、下个月、上一年和下一年
# 获取昨天
date -d 'yesterday' # 或 date -d 'last day'
# 获取明天
date -d 'tomorrow' # 或 date -d 'next day'
# 获取上个月
date -d 'last month'
#
- 我所理解的云计算
dongwei_6688
云计算
在刚开始接触到一个概念时,人们往往都会去探寻这个概念的含义,以达到对其有一个感性的认知,在Wikipedia上关于“云计算”是这么定义的,它说:
Cloud computing is a phrase used to describe a variety of computing co
- YII CMenu配置
dcj3sjt126com
yii
Adding id and class names to CMenu
We use the id and htmlOptions to accomplish this. Watch.
//in your view
$this->widget('zii.widgets.CMenu', array(
'id'=>'myMenu',
'items'=>$this-&g
- 设计模式之静态代理与动态代理
come_for_dream
设计模式
静态代理与动态代理
代理模式是java开发中用到的相对比较多的设计模式,其中的思想就是主业务和相关业务分离。所谓的代理设计就是指由一个代理主题来操作真实主题,真实主题执行具体的业务操作,而代理主题负责其他相关业务的处理。比如我们在进行删除操作的时候需要检验一下用户是否登陆,我们可以删除看成主业务,而把检验用户是否登陆看成其相关业务
- 【转】理解Javascript 系列
gcc2ge
JavaScript
理解Javascript_13_执行模型详解
摘要: 在《理解Javascript_12_执行模型浅析》一文中,我们初步的了解了执行上下文与作用域的概念,那么这一篇将深入分析执行上下文的构建过程,了解执行上下文、函数对象、作用域三者之间的关系。函数执行环境简单的代码:当调用say方法时,第一步是创建其执行环境,在创建执行环境的过程中,会按照定义的先后顺序完成一系列操作:1.首先会创建一个
- Subsets II
hcx2013
set
Given a collection of integers that might contain duplicates, nums, return all possible subsets.
Note:
Elements in a subset must be in non-descending order.
The solution set must not conta
- Spring4.1新特性——Spring缓存框架增强
jinnianshilongnian
spring4
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- shell嵌套expect执行命令
liyonghui160com
一直都想把expect的操作写到bash脚本里,这样就不用我再写两个脚本来执行了,搞了一下午终于有点小成就,给大家看看吧.
系统:centos 5.x
1.先安装expect
yum -y install expect
2.脚本内容:
cat auto_svn.sh
#!/bin/bash
- Linux实用命令整理
pda158
linux
0. 基本命令 linux 基本命令整理
1. 压缩 解压 tar -zcvf a.tar.gz a #把a压缩成a.tar.gz tar -zxvf a.tar.gz #把a.tar.gz解压成a
2. vim小结 2.1 vim替换 :m,ns/word_1/word_2/gc  
- 独立开发人员通向成功的29个小贴士
shoothao
独立开发
概述:本文收集了关于独立开发人员通向成功需要注意的一些东西,对于具体的每个贴士的注解有兴趣的朋友可以查看下面标注的原文地址。
明白你从事独立开发的原因和目的。
保持坚持制定计划的好习惯。
万事开头难,第一份订单是关键。
培养多元化业务技能。
提供卓越的服务和品质。
谨小慎微。
营销是必备技能。
学会组织,有条理的工作才是最有效率的。
“独立
- JAVA中堆栈和内存分配原理
uule
java
1、栈、堆
1.寄存器:最快的存储区, 由编译器根据需求进行分配,我们在程序中无法控制.2. 栈:存放基本类型的变量数据和对象的引用,但对象本身不存放在栈中,而是存放在堆(new 出来的对象)或者常量池中(字符串常量对象存放在常量池中。)3. 堆:存放所有new出来的对象。4. 静态域:存放静态成员(static定义的)5. 常量池:存放字符串常量和基本类型常量(public static f