- 【深度学习|学习笔记】网格搜索(GridSearchCV)和随机搜索(RandomizedSearchCV)详解,附代码。
努力毕业的小土博^_^
深度学习学习笔记深度学习学习笔记机器学习人工智能
【深度学习|学习笔记】网格搜索(GridSearchCV)和随机搜索(RandomizedSearchCV)详解,附代码。【深度学习|学习笔记】网格搜索(GridSearchCV)和随机搜索(RandomizedSearchCV)详解,附代码。文章目录【深度学习|学习笔记】网格搜索(GridSearchCV)和随机搜索(RandomizedSearchCV)详解,附代码。一、背景与发展:为什么需要
- 家谱html源码,好看的族谱树状图效果代码
Illusion.H
家谱html源码
家谱树状代码demobywww.webym.net/*NowtheCSS*/*{margin:0;padding:0;}.treeul{padding-top:20px;position:relative;transition:all0.5s;-webkit-transition:all0.5s;-moz-transition:all0.5s;}.treeli{float:left;text-al
- 基于大模型的急性结石性胆囊炎全流程预测与干预系统技术方案大纲
LCG元
大模型医疗研究-方案大纲人工智能机器学习深度学习方案大纲
目录一、引言二、术前阶段(一)疾病预测与诊断辅助(二)手术风险评估(三)手术方案制定辅助三、术中阶段(一)实时监测与风险预警(二)手术决策支持四、术后阶段(一)并发症风险预测(二)术后护理计划制定五、麻醉方案定制与优化(一)术前麻醉风险评估(二)术中麻醉管理六、统计分析与模型优化(一)数据收集与整理(二)模型性能评估(三)模型优化与更新七、实验验证与证据支持(一)回顾性队列研究(二)前瞻性随机对照
- AcWing--数据结构1
谢耳朵(wer~wer~)
Acwing学习数据结构c++算法
用数组来模拟链表。这种实现链表的方式也叫静态链表。1.单链表写邻接表:存储图和树我们定义:e[N]用来表示某个点的值是多少;ne[N]用来表示某个点的next指针是多少e和ne是用下标关联起来的如:head->3->5->7->9->空(下标从0开始,3的下标是0,以此类推,空的下标为-1)那么e[0]=3,ne[0]=1;e[1]=5,ne[1]=2;...e[3]=9,ne[3]=-1//单
- HashMap
HansenPole825
哈希算法散列表算法
一、结构1.数组(桶数组)初始容量默认16。数组元素成为桶,每个桶存储链表或红黑树(jdk1.8及以后)。2.链表当不同key的哈希值映射到同一桶式,以链表形式存储。3.红黑树jdk1.8及以后引入红黑树:当链表长度大于等于8且桶数组长度大于等于64式,链表转化为红黑树,查询时间从O(n)降为O(logn)。树节点小于6时退化为链表二、关键机制1.哈希计算(jdk1.8)staticfinalin
- UnityAPI——Math数学函数类、Random生成随机数类、OnMouseEventFunction 鼠标回调事件
WX呦
c#unity开发语言unity引擎
一、Mathf数学函数类1、三角函数介绍Unity的所有三角函数都以弧度为单位,提供了如下函数:Sin、Cos、Tan:计算正弦、余弦和正切值。Asin、Acos、Atan:计算反正弦、反余弦和反正切值。Atan2:计算两点之间的角度,考虑了X轴与2D向量之间的角度。应用假设您需要计算一个物体在圆周路径上的移动,您可以使用Mathf.Sin和Mathf.Cos来计算其在X和Y轴上的位置。float
- 红黑树与2-3树:插入、删除操作的时间复杂度与实现机制比较
一键难忘
红黑树数据结构
本文收录于专栏:算法之翼红黑树与2-3树:插入、删除操作的时间复杂度与实现机制比较红黑树(Red-BlackTree)和2-3树(2-3Tree)是两种广泛用于平衡二叉查找树的自平衡树结构。它们在插入、删除和查找操作中的性能都表现良好,并且可以确保树的高度是对数级别,从而保证了高效的操作时间。本文将对红黑树和2-3树进行深入的比较,并结合代码实例说明它们的实现和应用。1.数据结构简介1.1红黑树简
- 左神算法之二叉树最大路径和问题
岳轩子
左神算法算法深度优先
二叉树最大路径和问题(Java实现)文章目录二叉树最大路径和问题(Java实现)1.题目描述2.问题解释3.解决思路4.代码实现5.总结1.题目描述给定一棵二叉树,其中每个节点都包含一个整型权值。要求计算从根节点到叶节点的所有路径中,权值和最大的值是多少。2.问题解释必须从根节点出发到叶子节点结束需要遍历所有可能的路径找出所有路径和中最大的那个值叶子节点是指没有子节点的节点3.解决思路采用深度优先
- 深度学习使用Pytorch训练模型步骤
vvvdg
深度学习pytorch人工智能
训练模型是机器学习和深度学习中的核心过程,旨在通过大量数据学习模型参数,以便模型能够对新的、未见过的数据做出准确的预测。训练模型通常包括以下几个步骤:1.数据准备:收集和处理数据,包括清洗、标准化和归一化。将数据分为训练集、验证集和测试集。2.定义模型:选择模型架构,例如决策树、神经网络等。初始化模型参数(权重和偏置)。3.选择损失函数:根据任务类型(如分类、回归)选择合适的损失函数。4.选择优化
- 【Python】PyRoboPath:Python机器人路径规划的终极指南
宅男很神经
python开发语言
PyRoboPath:Python机器人路径规划的终极指南第1部分:PyRoboPath与路径规划基础第1章:PyRoboPath概览与核心理念1.1什么是PyRoboPath?PyRoboPath是一个先进的、开源的Python库,致力于为学术研究人员、行业工程师以及机器人爱好者提供一套完整、高效、易用且可扩展的机器人路径规划解决方案。它不仅仅是一个算法的集合,更是一个集成了机器人建模、环境表示
- 机器人系统导航里程计介绍
Xian-HHappy
机器人机器人人工智能算法里程计
一、引言在移动机器人的研究与应用领域,精准且实时地确定机器人的位置与姿态是实现其自主功能的关键。里程计作为达成这一目标的核心技术之一,在移动机器人的自主导航、路径规划、定位以及地图构建等诸多关键领域扮演着举足轻重的角色。随着机器人技术的持续演进,里程计已蜕变成为移动机器人实现SLAM(同步定位与地图构建)功能的基石。它通过对各类传感器所采集数据的精细计算与处理,运用增量式递推的策略,实时推算出机器
- python中random中uniform怎么用_Python中的random.uniform()函数教程与实例解析
weixin_39763640
random.uniform()函数教程与实例解析1.uniform()函数说明random.uniform(x,y)方法将随机生成一个实数,它在[x,y]范围内。2.uniform()的语法与参数2.1语法#_*_coding:utf-8_*_importrandomrandom.uniform(x,y)或#_*_coding:utf-8_*_fromrandomimportuniformuni
- Python实例题:基于遗传算法的旅行商问题求解
狐凄
实例python开发语言
目录Python实例题题目要求:解题思路:代码实现:Python实例题题目基于遗传算法的旅行商问题求解要求:使用遗传算法解决旅行商问题(TSP)。支持以下功能:随机生成城市坐标或导入预定义城市实现遗传算法的基本操作(选择、交叉、变异)可视化进化过程和最终路径统计进化过程中的适应度变化允许用户调整遗传算法参数(种群大小、迭代次数、交叉率、变异率等)。解题思路:用列表表示城市访问顺序作为染色体。使用欧
- 【算法笔记】红黑树插入操作
PXM的算法星球
算法笔记算法笔记
红黑树插入与调整详解一、红黑树的五大性质红黑树是一种自平衡的二叉搜索树(BST),其核心特性如下:颜色属性:每个节点非红即黑根属性:根节点必须为黑色叶子属性:所有的NIL叶子节点都是黑色红节点约束:红色节点的子节点必须为黑色(即无连续红节点)黑高平衡:从任一节点到其所有后代叶子节点的路径中,黑色节点数量相等二、插入操作流程阶段1:标准BST插入从根节点开始查找插入位置新节点总是红色按照BST规则插
- Leetcode 3600. Maximize Spanning Tree Stability with Upgrades
Espresso Macchiato
leetcode笔记leetcode3600leetcodehardleetcode周赛456二分法DSUUF并查集
Leetcode3600.MaximizeSpanningTreeStabilitywithUpgrades1.解题思路2.代码实现题目链接:3600.MaximizeSpanningTreeStabilitywithUpgrades1.解题思路这一题核心思路就是一个二分法的思路。我们定义函数is_possible(x),表示是否存在一个树的构造,使得任意一条边的长度均不少于xxx。显然,这里有两
- Leetcode 3599. Partition Array to Minimize XOR
Espresso Macchiato
leetcode笔记leetcode3599leetcodemediumleetcode周赛456动态规划
Leetcode3599.PartitionArraytoMinimizeXOR1.解题思路2.代码实现题目链接:3599.PartitionArraytoMinimizeXOR1.解题思路这一题就是一个动态规划的思路。我们定义动态规划的状态函数dp(idx,k)将数组arr[idx:]切分为kkk个子串之后能够获得的最大XOR的最小值。此时,我们就能有状态转移函数:dp(i,k)=minj=i+
- 力扣打卡第十五天 层次遍历非递归+递归
??tobenewyorker
算法leetcode职场和发展
102.二叉树的层序遍历给你二叉树的根节点root,返回其节点值的层序遍历。(即逐层地,从左到右访问所有节点)。示例1:输入:root=[3,9,20,null,null,15,7]输出:[[3],[9,20],[15,7]]示例2:输入:root=[1]输出:[[1]]示例3:输入:root=[]输出:[]提示:树中节点数目在范围[0,2000]内-1000>levelOrder(TreeNod
- Python助力自动驾驶:深度学习模型优化全攻略
Echo_Wish
Python!实战!python自动驾驶深度学习
Python助力自动驾驶:深度学习模型优化全攻略说起自动驾驶,大家第一反应往往是“高精地图”“传感器融合”“路径规划”等等,背后真正的“大脑”其实是各式各样的深度学习模型。它们负责感知环境、识别路况、预测行为,甚至实时做出决策。可是,跑在车上的这些模型不仅要精准,还得轻量、实时、稳定,这可不是简单的“丢GPU就能解决”的问题。今天,咱们就从Python开发者的视角,聊聊自动驾驶里深度学习模型的优化
- 二叉树之层序遍历
二叉树之层序遍历前言一、层序遍历是什么?二、层序遍历的构建三、样例代码疑问补充:总结前言在二叉树的四种遍历中,唯独层序遍历是最特殊的,他用的不是递归的思路,而是队列,在部分面试题里也出现不少一、层序遍历是什么?层序遍历就是按层从上到下,每层按一定顺序对树的节点进行遍历如图所示:他通过队列的形式,输入第一个节点到队头后,随着他的pop,他会将他的左右孩子push进入队列每当一个节点被pop,他的左右
- [特殊字符] Git团队协作实战指南
真实的菜
gitgitelasticsearch大数据
Git团队协作实战指南让多人开发不再是噩梦!从菜鸟到大神的团队协作进阶之路快速导航为什么团队协作这么重要?⚔️代码冲突?别慌!代码审查:让Bug无处遁形团队规范:统一江湖️神器推荐:工欲善其事沟通艺术:话说三分权限管理:该给的给,该收的收CI/CD:让机器替你干活问题追踪:一个都不能少新人培训:从零到英雄最佳实践:前人栽树常见坑点:踩坑指南实战案例:真刀真枪工具箱:装备升级为什么团队协作这么重要?
- open3d 使用 RANSAC 算法拟合平面
扶子
python点云处理平面pythonopen3d经验分享点云拟合平面
1、功能介绍:一个python代码演示了如何使用open3d和numpy来完成一个完整的点云平面拟合任务。它包括以下几个主要部分:生成符合某一平面方程的随机点云数据、使用RANSAC算法对这些点云进行平面拟合、可视化原始点云和平面拟合结果2、代码部分:importnumpyasnpimportopen3daso3d#生成随机点云np.random.seed(42)n_points=100#假设这些
- InnoDB的页分裂、页合并及优化策略
flydroid
mysql数据库
文章目录B+树结构1.非叶子节点(索引节点)2.叶子节点(数据节点)3.层级关系4.B+树vsB树的核心区别5.B+树查询流程示例1.页分裂(PageSplit)触发条件分裂过程分裂类型性能影响2.页合并(PageMerge)触发条件合并过程性能影响3.页分裂与合并的根因B+树的平衡性要求动态数据操作的必然结果4.页分裂与合并的优化策略减少页分裂减少页合并5.示例分析页分裂场景页合并场景总结Inn
- 从 “啃书焦虑” 到 “项目通关”:NLP 学习的破局之道
木旭林晖
自然语言处理学习人工智能
嘿,你好。在CSDN上潜水这么久,我总能看到很多像你我当年一样,怀揣着NLP大厂梦的同学。我猜,你的收藏夹里一定塞满了“NLP必读清单”,书架上可能还放着那本厚得像砖头一样的《统计学习方法》或者“龙书”。每天深夜,你可能都在跟一个又一个复杂的数学公式死磕。什么最大熵模型、什么CRF(条件随机场)的推导……你觉得自己离“精通”越来越近,但心里却越来越慌。为什么慌?因为你打开招聘软件,看到JD(职位描
- Python基础(吃洋葱小游戏)
aaiier
pythonpygame开发语言
下面我将为你设计一个"吃洋葱小游戏"的Python实现方案,使用Pygame库开发。这个游戏模拟吃洋葱的过程,玩家需要收集不同种类的洋葱以获得高分,同时避免吃到辣椒。吃洋葱小游戏-Python实现方案1.游戏设计概念游戏目标:玩家控制角色吃掉尽可能多的洋葱获得高分核心机制:洋葱从屏幕上方随机下落玩家左右移动角色接住洋葱不同洋葱有不同分值(普通洋葱+10,红洋葱+20,紫洋葱+50)辣椒会扣减生命值
- OpenCV图像噪点消除五大滤波方法
慕婉0307
opencv基础opencv人工智能计算机视觉
在数字图像处理中,噪点消除是提高图像质量的关键步骤。本文将基于OpenCV库,详细讲解五种经典的图像去噪滤波方法:均值滤波、方框滤波、高斯滤波、中值滤波和双边滤波,并通过丰富的代码示例展示它们的实际应用效果。一、图像噪点与滤波基础1.1常见图像噪声类型高斯噪声:符合正态分布的随机噪声椒盐噪声:随机出现的黑白像素点泊松噪声:光子计数噪声量化噪声:模拟信号数字化过程中产生1.2滤波方法分类滤波类型特点
- AutoGPT,自主完成复杂任务
小雷FansUnion
AI2025人工智能
AutoGPT是一个开源的AIAgent项目,它的核心目标是让AI能够自主完成复杂任务,而不仅仅是回答单个问题。简单来说,它让AI具备了"自主思考和行动"的能力。1.AutoGPT的核心概念什么是AIAgent?AIAgent(智能代理)是一种能够:自主规划:将大任务分解成小步骤自主决策:根据情况选择最佳行动自主执行:调用各种工具和API完成任务自主反思:评估结果并调整策略AutoGPT的独特之处
- python-拆解sklearn中决策树
weixin_41177022
scikit-learn决策树python机器学习编程
获取树结构实体对scikit-learn中DecisionTreeClassifier/Regressor的实例调用.tree_属性可以得到树结构。参考sklearn的决策树的官方说明sklearn.tree.DecisionTreeClassifier(不过里面说的help(sklearn.tree._tree.Tree)似乎不管用)获取决策树基本信息node总数可以用model.tree_.n
- Delta视觉定位系统
东城十三
vuca数码相机计算机视觉目标跟踪算法人工智能机器学习
Delta视觉定位系统软件应用背景Delta机器人以并联构型实现“轻量、高速、高精度”三位一体,成为高速分拣、精密装配、食品包装等领域的佼佼者。然而,其卓越的物理性能要转化为实际作业中的高精度定位取放能力,视觉定位系统是不可或缺的“眼睛”和“导航员”。尤其在面对高速运动目标或随机摆放(无序)物体的复杂场景时,视觉系统是实现高效、精准作业的核心技术保障。通过机器视觉实时识别目标物体的位置与姿态,引导
- 从决策树到随机森林:Python机器学习里的“树形家族“深度实战与原理拆解
小张在编程
机器学习决策树随机森林
引言在机器学习的算法森林中,有一对"树形兄弟"始终占据着C位——决策树像个逻辑清晰的"老教授",用可视化的树状结构把复杂决策过程拆解成"是/否"的简单判断;而它的进阶版随机森林更像一支"精英军团",通过多棵决策树的"投票表决",在准确性与抗过拟合能力上实现了质的飞跃。无论是医疗诊断中的疾病预测,还是金融风控里的违约判别,这对组合都用强大的适应性证明着自己的"算法常青树"地位。今天,我们就从原理到实
- React - 错误边界(Error boundary)
风轻轻~
#React__基础react.js
React-错误边界(Errorboundary)一.理解二.使用1.使用方式2.使用案例错误边界:https://zh-hans.reactjs.org/docs/error-boundaries.html一.理解部分UI的JavaScript错误不应该导致整个应用崩溃,为了解决这个问题,React16引入了一个新的概念——错误边界。错误边界是一种React组件,这种组件可以捕获发生在其子组件树
- 如何用ruby来写hadoop的mapreduce并生成jar包
wudixiaotie
mapreduce
ruby来写hadoop的mapreduce,我用的方法是rubydoop。怎么配置环境呢:
1.安装rvm:
不说了 网上有
2.安装ruby:
由于我以前是做ruby的,所以习惯性的先安装了ruby,起码调试起来比jruby快多了。
3.安装jruby:
rvm install jruby然后等待安
- java编程思想 -- 访问控制权限
百合不是茶
java访问控制权限单例模式
访问权限是java中一个比较中要的知识点,它规定者什么方法可以访问,什么不可以访问
一:包访问权限;
自定义包:
package com.wj.control;
//包
public class Demo {
//定义一个无参的方法
public void DemoPackage(){
System.out.println("调用
- [生物与医学]请审慎食用小龙虾
comsci
生物
现在的餐馆里面出售的小龙虾,有一些是在野外捕捉的,这些小龙虾身体里面可能带有某些病毒和细菌,人食用以后可能会导致一些疾病,严重的甚至会死亡.....
所以,参加聚餐的时候,最好不要点小龙虾...就吃养殖的猪肉,牛肉,羊肉和鱼,等动物蛋白质
- org.apache.jasper.JasperException: Unable to compile class for JSP:
商人shang
maven2.2jdk1.8
环境: jdk1.8 maven tomcat7-maven-plugin 2.0
原因: tomcat7-maven-plugin 2.0 不知吃 jdk 1.8,换成 tomcat7-maven-plugin 2.2就行,即
<plugin>
- 你的垃圾你处理掉了吗?GC
oloz
GC
前序:本人菜鸟,此文研究学习来自网络,各位牛牛多指教
1.垃圾收集算法的核心思想
Java语言建立了垃圾收集机制,用以跟踪正在使用的对象和发现并回收不再使用(引用)的对象。该机制可以有效防范动态内存分配中可能发生的两个危险:因内存垃圾过多而引发的内存耗尽,以及不恰当的内存释放所造成的内存非法引用。
垃圾收集算法的核心思想是:对虚拟机可用内存空间,即堆空间中的对象进行识别
- shiro 和 SESSSION
杨白白
shiro
shiro 在web项目里默认使用的是web容器提供的session,也就是说shiro使用的session是web容器产生的,并不是自己产生的,在用于非web环境时可用其他来源代替。在web工程启动的时候它就和容器绑定在了一起,这是通过web.xml里面的shiroFilter实现的。通过session.getSession()方法会在浏览器cokkice产生JESSIONID,当关闭浏览器,此
- 移动互联网终端 淘宝客如何实现盈利
小桔子
移動客戶端淘客淘寶App
2012年淘宝联盟平台为站长和淘宝客带来的分成收入突破30亿元,同比增长100%。而来自移动端的分成达1亿元,其中美丽说、蘑菇街、果库、口袋购物等App运营商分成近5000万元。 可以看出,虽然目前阶段PC端对于淘客而言仍旧是盈利的大头,但移动端已经呈现出爆发之势。而且这个势头将随着智能终端(手机,平板)的加速普及而更加迅猛
- wordpress小工具制作
aichenglong
wordpress小工具
wordpress 使用侧边栏的小工具,很方便调整页面结构
小工具的制作过程
1 在自己的主题文件中新建一个文件夹(如widget),在文件夹中创建一个php(AWP_posts-category.php)
小工具是一个类,想侧边栏一样,还得使用代码注册,他才可以再后台使用,基本的代码一层不变
<?php
class AWP_Post_Category extends WP_Wi
- JS微信分享
AILIKES
js
// 所有功能必须包含在 WeixinApi.ready 中进行
WeixinApi.ready(function(Api) {
// 微信分享的数据
var wxData = {
&nb
- 封装探讨
百合不是茶
JAVA面向对象 封装
//封装 属性 方法 将某些东西包装在一起,通过创建对象或使用静态的方法来调用,称为封装;封装其实就是有选择性地公开或隐藏某些信息,它解决了数据的安全性问题,增加代码的可读性和可维护性
在 Aname类中申明三个属性,将其封装在一个类中:通过对象来调用
例如 1:
//属性 将其设为私有
姓名 name 可以公开
- jquery radio/checkbox change事件不能触发的问题
bijian1013
JavaScriptjquery
我想让radio来控制当前我选择的是机动车还是特种车,如下所示:
<html>
<head>
<script src="http://ajax.googleapis.com/ajax/libs/jquery/1.7.1/jquery.min.js" type="text/javascript"><
- AngularJS中安全性措施
bijian1013
JavaScriptAngularJS安全性XSRFJSON漏洞
在使用web应用中,安全性是应该首要考虑的一个问题。AngularJS提供了一些辅助机制,用来防护来自两个常见攻击方向的网络攻击。
一.JSON漏洞
当使用一个GET请求获取JSON数组信息的时候(尤其是当这一信息非常敏感,
- [Maven学习笔记九]Maven发布web项目
bit1129
maven
基于Maven的web项目的标准项目结构
user-project
user-core
user-service
user-web
src
- 【Hive七】Hive用户自定义聚合函数(UDAF)
bit1129
hive
用户自定义聚合函数,用户提供的多个入参通过聚合计算(求和、求最大值、求最小值)得到一个聚合计算结果的函数。
问题:UDF也可以提供输入多个参数然后输出一个结果的运算,比如加法运算add(3,5),add这个UDF需要实现UDF的evaluate方法,那么UDF和UDAF的实质分别究竟是什么?
Double evaluate(Double a, Double b)
- 通过 nginx-lua 给 Nginx 增加 OAuth 支持
ronin47
前言:我们使用Nginx的Lua中间件建立了OAuth2认证和授权层。如果你也有此打算,阅读下面的文档,实现自动化并获得收益。SeatGeek 在过去几年中取得了发展,我们已经积累了不少针对各种任务的不同管理接口。我们通常为新的展示需求创建新模块,比如我们自己的博客、图表等。我们还定期开发内部工具来处理诸如部署、可视化操作及事件处理等事务。在处理这些事务中,我们使用了几个不同的接口来认证:
&n
- 利用tomcat-redis-session-manager做session同步时自定义类对象属性保存不上的解决方法
bsr1983
session
在利用tomcat-redis-session-manager做session同步时,遇到了在session保存一个自定义对象时,修改该对象中的某个属性,session未进行序列化,属性没有被存储到redis中。 在 tomcat-redis-session-manager的github上有如下说明: Session Change Tracking
As noted in the &qu
- 《代码大全》表驱动法-Table Driven Approach-1
bylijinnan
java算法
关于Table Driven Approach的一篇非常好的文章:
http://www.codeproject.com/Articles/42732/Table-driven-Approach
package com.ljn.base;
import java.util.Random;
public class TableDriven {
public
- Sybase封锁原理
chicony
Sybase
昨天在操作Sybase IQ12.7时意外操作造成了数据库表锁定,不能删除被锁定表数据也不能往其中写入数据。由于着急往该表抽入数据,因此立马着手解决该表的解锁问题。 无奈此前没有接触过Sybase IQ12.7这套数据库产品,加之当时已属于下班时间无法求助于支持人员支持,因此只有借助搜索引擎强大的
- java异常处理机制
CrazyMizzz
java
java异常关键字有以下几个,分别为 try catch final throw throws
他们的定义分别为
try: Opening exception-handling statement.
catch: Captures the exception.
finally: Runs its code before terminating
- hive 数据插入DML语法汇总
daizj
hiveDML数据插入
Hive的数据插入DML语法汇总1、Loading files into tables语法:1) LOAD DATA [LOCAL] INPATH 'filepath' [OVERWRITE] INTO TABLE tablename [PARTITION (partcol1=val1, partcol2=val2 ...)]解释:1)、上面命令执行环境为hive客户端环境下: hive>l
- 工厂设计模式
dcj3sjt126com
设计模式
使用设计模式是促进最佳实践和良好设计的好办法。设计模式可以提供针对常见的编程问题的灵活的解决方案。 工厂模式
工厂模式(Factory)允许你在代码执行时实例化对象。它之所以被称为工厂模式是因为它负责“生产”对象。工厂方法的参数是你要生成的对象对应的类名称。
Example #1 调用工厂方法(带参数)
<?phpclass Example{
- mysql字符串查找函数
dcj3sjt126com
mysql
FIND_IN_SET(str,strlist)
假如字符串str 在由N 子链组成的字符串列表strlist 中,则返回值的范围在1到 N 之间。一个字符串列表就是一个由一些被‘,’符号分开的自链组成的字符串。如果第一个参数是一个常数字符串,而第二个是type SET列,则 FIND_IN_SET() 函数被优化,使用比特计算。如果str不在strlist 或st
- jvm内存管理
easterfly
jvm
一、JVM堆内存的划分
分为年轻代和年老代。年轻代又分为三部分:一个eden,两个survivor。
工作过程是这样的:e区空间满了后,执行minor gc,存活下来的对象放入s0, 对s0仍会进行minor gc,存活下来的的对象放入s1中,对s1同样执行minor gc,依旧存活的对象就放入年老代中;
年老代满了之后会执行major gc,这个是stop the word模式,执行
- CentOS-6.3安装配置JDK-8
gengzg
centos
JAVA_HOME=/usr/java/jdk1.8.0_45
JRE_HOME=/usr/java/jdk1.8.0_45/jre
PATH=$PATH:$JAVA_HOME/bin:$JRE_HOME/bin
CLASSPATH=.:$JAVA_HOME/lib/dt.jar:$JAVA_HOME/lib/tools.jar:$JRE_HOME/lib
export JAVA_HOME
- 【转】关于web路径的获取方法
huangyc1210
Web路径
假定你的web application 名称为news,你在浏览器中输入请求路径: http://localhost:8080/news/main/list.jsp 则执行下面向行代码后打印出如下结果: 1、 System.out.println(request.getContextPath()); //可返回站点的根路径。也就是项
- php里获取第一个中文首字母并排序
远去的渡口
数据结构PHP
很久没来更新博客了,还是觉得工作需要多总结的好。今天来更新一个自己认为比较有成就的问题吧。 最近在做储值结算,需求里结算首页需要按门店的首字母A-Z排序。我的数据结构原本是这样的:
Array
(
[0] => Array
(
[sid] => 2885842
[recetcstoredpay] =&g
- java内部类
hm4123660
java内部类匿名内部类成员内部类方法内部类
在Java中,可以将一个类定义在另一个类里面或者一个方法里面,这样的类称为内部类。内部类仍然是一个独立的类,在编译之后内部类会被编译成独立的.class文件,但是前面冠以外部类的类名和$符号。内部类可以间接解决多继承问题,可以使用内部类继承一个类,外部类继承一个类,实现多继承。
&nb
- Caused by: java.lang.IncompatibleClassChangeError: class org.hibernate.cfg.Exten
zhb8015
maven pom.xml关于hibernate的配置和异常信息如下,查了好多资料,问题还是没有解决。只知道是包冲突,就是不知道是哪个包....遇到这个问题的分享下是怎么解决的。。
maven pom:
<dependency>
<groupId>org.hibernate</groupId>
<ar
- Spark 性能相关参数配置详解-任务调度篇
Stark_Summer
sparkcachecpu任务调度yarn
随着Spark的逐渐成熟完善, 越来越多的可配置参数被添加到Spark中来, 本文试图通过阐述这其中部分参数的工作原理和配置思路, 和大家一起探讨一下如何根据实际场合对Spark进行配置优化。
由于篇幅较长,所以在这里分篇组织,如果要看最新完整的网页版内容,可以戳这里:http://spark-config.readthedocs.org/,主要是便
- css3滤镜
wangkeheng
htmlcss
经常看到一些网站的底部有一些灰色的图标,鼠标移入的时候会变亮,开始以为是js操作src或者bg呢,搜索了一下,发现了一个更好的方法:通过css3的滤镜方法。
html代码:
<a href='' class='icon'><img src='utv.jpg' /></a>
css代码:
.icon{-webkit-filter: graysc