基于Hadoop生态圈的数据仓库实践 —— 进阶技术(四)

四、角色扮演维度
        当一个事实表多次引用一个维度表时会用到角色扮演维度。例如,一个销售订单有一个是订单日期,还有一个交货日期,这时就需要引用日期维度表两次。
        本节将说明两类角色扮演维度的实现,分别是表别名和数据库视图。这两种都使用了Hive的功能。表别名是在SQL语句里引用维度表多次,每次引用都赋予维度表一个别名。而数据库视图,则是按照事实表需要引用维度表的次数,建立相同数量的视图。
1. 修改数据库模式
        使用下面的脚本修改数据库模式。分别给数据仓库里的事实表sales_order_fact和源数据库中订单销售表sales_order增加request_delivery_date_sk和request_delivery_date列。
-- in hive
USE dw; 

-- sales_order_fact表是ORC格式,增加列需要重建数据
ALTER TABLE sales_order_fact RENAME TO sales_order_fact_old; 
CREATE TABLE sales_order_fact (  
    order_sk INT comment 'order surrogate key',      
    customer_sk INT comment 'customer surrogate key',      
    product_sk INT comment 'product surrogate key',      
    order_date_sk INT comment 'date surrogate key',
    request_delivery_date_sk INT comment 'request delivery date surrogate key',
    order_amount DECIMAL(10 , 2 ) comment 'order amount',  
    order_quantity INT COMMENT 'order_quantity'  
)  
CLUSTERED BY (order_sk) INTO 8 BUCKETS  
STORED AS ORC TBLPROPERTIES ('transactional'='true');  
INSERT INTO sales_order_fact 
SELECT order_sk, customer_sk, product_sk, order_date_sk, NULL, order_amount, order_quantity
  FROM sales_order_fact_old;  
DROP TABLE sales_order_fact_old;  

USE rds;  
ALTER TABLE sales_order ADD COLUMNS (request_delivery_date DATE COMMENT 'request delivery date') ;  

-- in mysql
USE source;  
ALTER TABLE sales_order ADD request_delivery_date DATE AFTER order_date ;
        修改后源数据库模式如下图所示。
基于Hadoop生态圈的数据仓库实践 —— 进阶技术(四)_第1张图片
        修改后DW数据库模式如下图所示。

        Hive不能像MySQL那样指定新增列的位置,它新增的列都是在表的最后。
2. 重建Sqoop作业
        使用下面的脚本重建Sqoop作业,增加request_delivery_date列。
last_value=`sqoop job --show myjob_incremental_import --meta-connect jdbc:hsqldb:hsql://cdh2:16000/sqoop | grep incremental.last.value | awk '{print $3}'`
sqoop job --delete myjob_incremental_import --meta-connect jdbc:hsqldb:hsql://cdh2:16000/sqoop
sqoop job \
--meta-connect jdbc:hsqldb:hsql://cdh2:16000/sqoop \
--create myjob_incremental_import \
-- \
import \
--connect "jdbc:mysql://cdh1:3306/source?useSSL=false&user=root&password=mypassword" \
--table sales_order \
--columns "order_number, customer_number, product_code, order_date, entry_date, order_amount, order_quantity, request_delivery_date" \
--hive-import \
--hive-table rds.sales_order \
--incremental append \
--check-column order_number \
--last-value $last_value
        注意columns参数值中列的顺序(MySQL里的source.sales_order)要和rds.sales_order的顺序保持一致。
3. 修改定期装载regular_etl.sql文件
        定期装载HiveQL脚本需要增加对交货日期列的处理,修改后的脚本如下所示。
-- 设置变量以支持事务  
set hive.support.concurrency=true;  
set hive.exec.dynamic.partition.mode=nonstrict;  
set hive.txn.manager=org.apache.hadoop.hive.ql.lockmgr.DbTxnManager;  
set hive.compactor.initiator.on=true;  
set hive.compactor.worker.threads=1;  
  
USE dw;  
    
-- 设置SCD的生效时间和过期时间  
SET hivevar:cur_date = CURRENT_DATE();  
SET hivevar:pre_date = DATE_ADD(${hivevar:cur_date},-1);  
SET hivevar:max_date = CAST('2200-01-01' AS DATE);  
    
-- 设置CDC的上限时间  
INSERT OVERWRITE TABLE rds.cdc_time SELECT last_load, ${hivevar:cur_date} FROM rds.cdc_time;  
  
-- 装载customer维度  
-- 设置已删除记录和地址相关列上SCD2的过期,用<=>运算符处理NULL值。  
UPDATE customer_dim   
   SET expiry_date = ${hivevar:pre_date}    
 WHERE customer_dim.customer_sk IN    
(SELECT a.customer_sk   
   FROM (SELECT customer_sk,  
                customer_number,  
                customer_street_address,  
                customer_zip_code,  
                customer_city,  
                customer_state,  
                shipping_address,  
                shipping_zip_code,  
                shipping_city,  
                shipping_state  
           FROM customer_dim WHERE expiry_date = ${hivevar:max_date}) a LEFT JOIN   
                rds.customer b ON a.customer_number = b.customer_number   
          WHERE b.customer_number IS NULL OR   
          (  !(a.customer_street_address <=> b.customer_street_address)  
          OR !(a.customer_zip_code <=> b.customer_zip_code)  
          OR !(a.customer_city <=> b.customer_city)  
          OR !(a.customer_state <=> b.customer_state)  
          OR !(a.shipping_address <=> b.shipping_address)  
          OR !(a.shipping_zip_code <=> b.shipping_zip_code)  
          OR !(a.shipping_city <=> b.shipping_city)  
          OR !(a.shipping_state <=> b.shipping_state)  
          ));   
  
-- 处理customer_street_addresses列上SCD2的新增行    
INSERT INTO customer_dim  
SELECT  
    ROW_NUMBER() OVER (ORDER BY t1.customer_number) + t2.sk_max,  
    t1.customer_number,  
    t1.customer_name,  
    t1.customer_street_address,  
    t1.customer_zip_code,  
    t1.customer_city,  
    t1.customer_state,  
    t1.shipping_address,  
    t1.shipping_zip_code,  
    t1.shipping_city,  
    t1.shipping_state,  
    t1.version,  
    t1.effective_date,  
    t1.expiry_date  
FROM    
(    
SELECT    
    t2.customer_number customer_number,  
    t2.customer_name customer_name,  
    t2.customer_street_address customer_street_address,  
    t2.customer_zip_code customer_zip_code,  
    t2.customer_city customer_city,  
    t2.customer_state customer_state,  
    t2.shipping_address shipping_address,  
    t2.shipping_zip_code shipping_zip_code,  
    t2.shipping_city shipping_city,  
    t2.shipping_state shipping_state,  
    t1.version + 1 version,  
    ${hivevar:pre_date} effective_date,    
    ${hivevar:max_date} expiry_date    
 FROM customer_dim t1   
INNER JOIN rds.customer t2    
   ON t1.customer_number = t2.customer_number     
  AND t1.expiry_date = ${hivevar:pre_date}    
 LEFT JOIN customer_dim t3   
   ON t1.customer_number = t3.customer_number   
  AND t3.expiry_date = ${hivevar:max_date}    
WHERE (!(t1.customer_street_address <=> t2.customer_street_address)  
   OR  !(t1.customer_zip_code <=> t2.customer_zip_code)  
   OR  !(t1.customer_city <=> t2.customer_city)  
   OR  !(t1.customer_state <=> t2.customer_state)  
   OR  !(t1.shipping_address <=> t2.shipping_address)  
   OR  !(t1.shipping_zip_code <=> t2.shipping_zip_code)  
   OR  !(t1.shipping_city <=> t2.shipping_city)  
   OR  !(t1.shipping_state <=> t2.shipping_state)  
   )  
  AND t3.customer_sk IS NULL) t1    
CROSS JOIN    
(SELECT COALESCE(MAX(customer_sk),0) sk_max FROM customer_dim) t2;  
  
-- 处理customer_name列上的SCD1  
-- 因为hive的update的set子句还不支持子查询,所以这里使用了一个临时表存储需要更新的记录,用先delete再insert代替update  
-- 因为SCD1本身就不保存历史数据,所以这里更新维度表里的所有customer_name改变的记录,而不是仅仅更新当前版本的记录  
DROP TABLE IF EXISTS tmp;  
CREATE TABLE tmp AS  
SELECT  
    a.customer_sk,  
    a.customer_number,  
    b.customer_name,  
    a.customer_street_address,  
    a.customer_zip_code,  
    a.customer_city,  
    a.customer_state,  
    a.shipping_address,  
    a.shipping_zip_code,  
    a.shipping_city,  
    a.shipping_state,  
    a.version,  
    a.effective_date,  
    a.expiry_date  
  FROM customer_dim a, rds.customer b    
 WHERE a.customer_number = b.customer_number AND !(a.customer_name <=> b.customer_name);    
DELETE FROM customer_dim WHERE customer_dim.customer_sk IN (SELECT customer_sk FROM tmp);    
INSERT INTO customer_dim SELECT * FROM tmp;  
  
-- 处理新增的customer记录   
INSERT INTO customer_dim  
SELECT  
    ROW_NUMBER() OVER (ORDER BY t1.customer_number) + t2.sk_max,  
    t1.customer_number,  
    t1.customer_name,  
    t1.customer_street_address,  
    t1.customer_zip_code,  
    t1.customer_city,  
    t1.customer_state,  
    t1.shipping_address,  
    t1.shipping_zip_code,  
    t1.shipping_city,  
    t1.shipping_state,  
    1,  
    ${hivevar:pre_date},  
    ${hivevar:max_date}  
FROM    
(    
SELECT t1.* FROM rds.customer t1 LEFT JOIN customer_dim t2 ON t1.customer_number = t2.customer_number    
 WHERE t2.customer_sk IS NULL) t1    
CROSS JOIN    
(SELECT COALESCE(MAX(customer_sk),0) sk_max FROM customer_dim) t2;  
  
-- 重载PA客户维度  
TRUNCATE TABLE pa_customer_dim;    
INSERT INTO pa_customer_dim    
SELECT    
  customer_sk    
, customer_number    
, customer_name    
, customer_street_address    
, customer_zip_code    
, customer_city    
, customer_state    
, shipping_address    
, shipping_zip_code    
, shipping_city    
, shipping_state    
, version    
, effective_date    
, expiry_date    
FROM customer_dim    
WHERE customer_state = 'PA' ;   
  
-- 装载product维度  
-- 设置已删除记录和product_name、product_category列上SCD2的过期  
UPDATE product_dim  
   SET expiry_date = ${hivevar:pre_date}    
 WHERE product_dim.product_sk IN    
(SELECT a.product_sk   
   FROM (SELECT product_sk,product_code,product_name,product_category   
           FROM product_dim WHERE expiry_date = ${hivevar:max_date}) a LEFT JOIN   
                rds.product b ON a.product_code = b.product_code   
          WHERE b.product_code IS NULL OR (a.product_name <> b.product_name OR a.product_category <> b.product_category));  
  
-- 处理product_name、product_category列上SCD2的新增行    
INSERT INTO product_dim  
SELECT  
    ROW_NUMBER() OVER (ORDER BY t1.product_code) + t2.sk_max,  
    t1.product_code,  
    t1.product_name,  
    t1.product_category,  
    t1.version,  
    t1.effective_date,  
    t1.expiry_date  
FROM    
(    
SELECT    
    t2.product_code product_code,  
    t2.product_name product_name,  
    t2.product_category product_category,      
    t1.version + 1 version,  
    ${hivevar:pre_date} effective_date,    
    ${hivevar:max_date} expiry_date    
 FROM product_dim t1   
INNER JOIN rds.product t2    
   ON t1.product_code = t2.product_code    
  AND t1.expiry_date = ${hivevar:pre_date}    
 LEFT JOIN product_dim t3   
   ON t1.product_code = t3.product_code   
  AND t3.expiry_date = ${hivevar:max_date}    
WHERE (t1.product_name <> t2.product_name OR t1.product_category <> t2.product_category) AND t3.product_sk IS NULL) t1    
CROSS JOIN    
(SELECT COALESCE(MAX(product_sk),0) sk_max FROM product_dim) t2;  
  
-- 处理新增的product记录  
INSERT INTO product_dim  
SELECT  
    ROW_NUMBER() OVER (ORDER BY t1.product_code) + t2.sk_max,  
    t1.product_code,  
    t1.product_name,  
    t1.product_category,  
    1,  
    ${hivevar:pre_date},  
    ${hivevar:max_date}  
FROM    
(    
SELECT t1.* FROM rds.product t1 LEFT JOIN product_dim t2 ON t1.product_code = t2.product_code    
 WHERE t2.product_sk IS NULL) t1    
CROSS JOIN    
(SELECT COALESCE(MAX(product_sk),0) sk_max FROM product_dim) t2;  
  
-- 装载order维度  
INSERT INTO order_dim  
SELECT  
    ROW_NUMBER() OVER (ORDER BY t1.order_number) + t2.sk_max,  
    t1.order_number,  
    t1.version,  
    t1.effective_date,  
    t1.expiry_date  
  FROM  
(  
SELECT  
    order_number order_number,  
    1 version,  
    order_date effective_date,  
    '2200-01-01' expiry_date  
  FROM rds.sales_order, rds.cdc_time   
 WHERE entry_date >= last_load AND entry_date < current_load ) t1  
CROSS JOIN    
(SELECT COALESCE(MAX(order_sk),0) sk_max FROM order_dim) t2;  
  
-- 装载销售订单事实表  
INSERT INTO sales_order_fact  
SELECT  
    order_sk,  
    customer_sk,  
    product_sk,  
    e.date_sk,
    f.date_sk,
    order_amount,  
    order_quantity	
  FROM  
    rds.sales_order a,  
    order_dim b,  
    customer_dim c,  
    product_dim d,  
    date_dim e,
    date_dim f,
    rds.cdc_time g	
 WHERE  
    a.order_number = b.order_number  
AND a.customer_number = c.customer_number  
AND a.order_date >= c.effective_date  
AND a.order_date < c.expiry_date  
AND a.product_code = d.product_code  
AND a.order_date >= d.effective_date  
AND a.order_date < d.expiry_date  
AND to_date(a.order_date) = e.date 
AND to_date(a.request_delivery_date) = f.date 
AND a.entry_date >= g.last_load AND a.entry_date < g.current_load ;  
  
-- 更新时间戳表的last_load字段  
INSERT OVERWRITE TABLE rds.cdc_time SELECT current_load, current_load FROM rds.cdc_time;
4. 测试
(1)执行下面的SQL脚本增加三个带有交货日期的销售订单。
USE source;
/***      
新增订单日期为2016年7月17日的3条订单。  
***/    
SET @start_date := unix_timestamp('2016-07-17');    
SET @end_date := unix_timestamp('2016-07-18'); 
SET @request_delivery_date := '2016-07-20';   
DROP TABLE IF EXISTS temp_sales_order_data;    
CREATE TABLE temp_sales_order_data AS SELECT * FROM sales_order WHERE 1=0;     
    
SET @order_date := from_unixtime(@start_date + rand() * (@end_date - @start_date));    
SET @amount := floor(1000 + rand() * 9000);  
SET @quantity := floor(10 + rand() * 90);  
INSERT INTO temp_sales_order_data VALUES (126, 1, 1, @order_date, @request_delivery_date, @order_date, @amount, @quantity);    
    
SET @order_date := from_unixtime(@start_date + rand() * (@end_date - @start_date));    
SET @amount := floor(1000 + rand() * 9000);    
SET @quantity := floor(10 + rand() * 90);  
INSERT INTO temp_sales_order_data VALUES (127, 2, 2, @order_date, @request_delivery_date, @order_date, @amount, @quantity);    
    
SET @order_date := from_unixtime(@start_date + rand() * (@end_date - @start_date));    
SET @amount := floor(1000 + rand() * 9000);  
SET @quantity := floor(10 + rand() * 90);    
INSERT INTO temp_sales_order_data VALUES (128, 3, 3, @order_date, @request_delivery_date, @order_date, @amount, @quantity);    
    
INSERT INTO sales_order    
SELECT NULL,customer_number,product_code,order_date,request_delivery_date,entry_date,order_amount,order_quantity FROM temp_sales_order_data ORDER BY order_date;      
  
COMMIT ;

        修改后的销售订单源数据如下图所示,最后三条含有交货日期。

基于Hadoop生态圈的数据仓库实践 —— 进阶技术(四)_第2张图片

(2)修改rds.cdc_time的值
USE rds;
INSERT OVERWRITE TABLE rds.cdc_time SELECT '2016-07-17', '2016-07-17' FROM rds.cdc_time;
(3)执行定期装载并查看结果。
        使用下面的命令执行定期装载。
./regular_etl.sh
        使用下面的查询验证结果。
use dw;
select a.order_sk, request_delivery_date_sk, c.date
  from sales_order_fact a, date_dim b, date_dim c
 where a.order_date_sk = b.date_sk 
   and a.request_delivery_date_sk = c.date_sk ;
        查询结果如下图所示,可以看到只有三个新的销售订单具有request_delivery_date_sk值,是2016年7月20日。

5. 使用角色扮演维度查询
-- 使用表别名查询
USE dw;  
  
SELECT   
    order_date_dim.date order_date,  
    request_delivery_date_dim.date request_delivery_date,  
    SUM(order_amount),  
    COUNT(*)  
FROM  
    sales_order_fact a,  
    date_dim order_date_dim,  
    date_dim request_delivery_date_dim  
WHERE  
    a.order_date_sk = order_date_dim.date_sk  
        AND a.request_delivery_date_sk = request_delivery_date_dim.date_sk  
GROUP BY order_date_dim.date , request_delivery_date_dim.date  
CLUSTER BY order_date_dim.date , request_delivery_date_dim.date;

-- 使用视图查询
USE dw;  
  
CREATE VIEW order_date_dim 
(order_date_sk, order_date, month, month_name,  quarter, year, promo_ind) 
AS SELECT * FROM date_dim;  
  
CREATE VIEW request_delivery_date_dim 
(request_delivery_date_sk, request_delivery_date, month, month_name, quarter, year, promo_ind) 
AS SELECT * FROM date_dim;

SELECT   
    order_date,  
    request_delivery_date,  
    SUM(order_amount),  
    COUNT(*)  
FROM  
    sales_order_fact a,  
    order_date_dim b,  
    request_delivery_date_dim c  
WHERE  
    a.order_date_sk = b.order_date_sk  
        AND a.request_delivery_date_sk = c.request_delivery_date_sk  
GROUP BY order_date , request_delivery_date  
CLUSTER BY order_date , request_delivery_date;

        上面两个查询的结果相同,如下图所示:

基于Hadoop生态圈的数据仓库实践 —— 进阶技术(四)_第3张图片

你可能感兴趣的:(基于Hadoop生态圈的数据仓库实践 —— 进阶技术(四))