总结:原来越迷糊,以后肯定需要多加巩固一下
内容:__slots__,@property,多重继承,MixIn,定制类(__str__,__iter__,__getitem__,__getattr__,__call__),枚举类(Enum),元类(type()),metaclass,ORM
1方法绑定
为了给所有实例都绑定方法,可以给class绑定方法:
>>> def set_score(self, score):
... self.score = score
...
>>> Student.set_score = MethodType(set_score, Student)
给class绑定方法后,所有实例均可调用:
>>> s.set_score(100)
>>> s.score
100
>>> s2.set_score(99)
>>> s2.score
99
通常情况下,上面的set_score
方法可以直接定义在class中,但动态绑定允许我们在程序运行的过程中动态给class加上功能,这在静态语言中很难实现。
为了达到限制的目的,Python允许在定义class的时候,定义一个特殊的__slots__
变量,来限制该class实例能添加的属性:
class Student(object):
__slots__ = ('name', 'age') # 用tuple定义允许绑定的属性名称
__slots__
定义的属性仅对当前类实例起作用,对继承的子类是不起作用的
3 @property
为了限制score的范围,可以通过一个set_score()
方法来设置成绩,再通过一个get_score()
来获取成绩,这样,在set_score()
方法里,就可以检查参数:
class Student(object):
def get_score(self):
return self._score
def set_score(self, value):
if not isinstance(value, int):
raise ValueError('score must be an integer!')
if value < 0 or value > 100:
raise ValueError('score must between 0 ~ 100!')
self._score = value
现在,对任意的Student实例进行操作,就不能随心所欲地设置score了:
>>> s = Student()
>>> s.set_score(60) # ok!
>>> s.get_score()
60
>>> s.set_score(9999)
Traceback (most recent call last):
...
ValueError: score must between 0 ~ 100!
但是,上面的调用方法又略显复杂,没有直接用属性这么直接简单
Python内置的@property
装饰器就是负责把一个方法变成属性调用的:
class Student(object):
@property
def score(self):
return self._score
@score.setter
def score(self, value):
if not isinstance(value, int):
raise ValueError('score must be an integer!')
if value < 0 or value > 100:
raise ValueError('score must between 0 ~ 100!')
self._score = value
@property
的实现比较复杂,我们先考察如何使用。把一个getter方法变成属性,只需要加上@property
就可以了,此时,@property
本身又创建了另一个装饰器@score.setter
,负责把一个setter方法变成属性赋值,于是,我们就拥有一个可控的属性操作:
>>> s = Student()
>>> s.score = 60 # OK,实际转化为s.set_score(60)
>>> s.score # OK,实际转化为s.get_score()
60
>>> s.score = 9999
Traceback (most recent call last):
...
ValueError: score must between 0 ~ 100!
注意到这个神奇的
@property
,我们在对实例属性操作的时候,就知道该属性很可能不是直接暴露的,而是通过getter和setter方法来实现
还可以定义只读属性,只定义getter方法,不定义setter方法就是一个只读属性:
class Student(object):
@property
def birth(self):
return self._birth
@birth.setter
def birth(self, value):
self._birth = value
@property
def age(self):
return 2015 - self._birth
上面的birth
是可读写属性,而age
就是一个只读属性,因为age
可以根据birth
和当前时间计算出来。
请利用@property
给一个Screen
对象加上width
和height
属性,以及一个只读属性resolution
:
# -*- coding: utf-8 -*- class Screen(object):
@property
def width(self):
return self._width
@width.setter
def width(self,width):
self._width=width
@property
def height(self):
return self._height
@height.setter
def height(self,height):
self._height=height
@property
def resolution(self):
return (self.width)*(self.height)
# test: s = Screen() s.width = 1024 s.height = 768 print(s.resolution) assert s.resolution == 786432, '1024 * 768 = %d ?' % s.resolution5多重继承
首先,主要的类层次仍按照哺乳类和鸟类设计:
class Animal(object):
pass
# 大类:
class Mammal(Animal):
pass
class Bird(Animal):
pass
# 各种动物:
class Dog(Mammal):
pass
class Bat(Mammal):
pass
class Parrot(Bird):
pass
class Ostrich(Bird):
pass
现在,我们要给动物再加上Runnable
和Flyable
的功能,只需要先定义好Runnable
和Flyable
的类:
class Runnable(object):
def run(self):
print('Running...')
class Flyable(object):
def fly(self):
print('Flying...')
对于需要Runnable
功能的动物,就多继承一个Runnable
,例如Dog
:
class Dog(Mammal, Runnable):
pass
通过多重继承,一个子类就可以同时获得多个父类的所有功能
6MixIn
为了更好地看出继承关系,我们把Runnable
和Flyable
改为RunnableMixIn
和FlyableMixIn
。类似的,你还可以定义出肉食动物CarnivorousMixIn
和植食动物HerbivoresMixIn
,让某个动物同时拥有好几个MixIn:
class Dog(Mammal, RunnableMixIn, CarnivorousMixIn):
pass
MixIn的目的就是给一个类增加多个功能,这样,在设计类的时候,我们优先考虑通过多重继承来组合多个MixIn的功能,而不是设计多层次的复杂的继承关系TCPServer
和UDPServer
这两类网络服务,而要同时服务多个用户就必须使用多进程或多线程模型,这两种模型由ForkingMixIn
和ThreadingMixIn
提供。通过组合,我们就可以创造出合适的服务来 我们先定义一个Student
类,打印一个实例:
>>> class Student(object):
... def __init__(self, name):
... self.name = name
...
>>> print(Student('Michael'))
<__main__.Student object at 0x109afb190>
打印出一堆<__main__.Student object at 0x109afb190>
,不好看。
怎么才能打印得好看呢?只需要定义好__str__()
方法,返回一个好看的字符串就可以了:
>>> class Student(object):
... def __init__(self, name):
... self.name = name
... def __str__(self):
... return 'Student object (name: %s)' % self.name
...
>>> print(Student('Michael'))
Student object (name: Michael)
直接敲变量不用print
,打印出来的实例还是不好看:
>>> s = Student('Michael')
>>> s
<__main__.Student object at 0x109afb310>
这是因为直接显示变量调用的不是__str__()
,而是__repr__()
,两者的区别是__str__()
返回用户看到的字符串,而__repr__()
返回程序开发者看到的字符串,也就是说,__repr__()
是为调试服务的。
如果一个类想被用于for ... in
循环,类似list或tuple那样,就必须实现一个__iter__()
方法,该方法返回一个迭代对象,然后,Python的for循环就会不断调用该迭代对象的__next__()
方法拿到循环的下一个值,直到遇到StopIteration
错误时退出循环。
我们以斐波那契数列为例,写一个Fib类,可以作用于for循环:
class Fib(object):
def __init__(self):
self.a, self.b = 0, 1 # 初始化两个计数器a,b
def __iter__(self):
return self # 实例本身就是迭代对象,故返回自己
def __next__(self):
self.a, self.b = self.b, self.a + self.b # 计算下一个值
if self.a > 100000: # 退出循环的条件
raise StopIteration();
return self.a # 返回下一个值
现在,试试把Fib实例作用于for循环:
>>> for n in Fib():
... print(n)
...
1
1
2
3
5
...
46368
75025
9
__getitem__
要表现得像list那样按照下标取出元素,需要实现__getitem__()
方法:
class Fib(object):
def __getitem__(self, n):
a, b = 1, 1
for x in range(n):
a, b = b, a + b
return a
现在,就可以按下标访问数列的任意一项了:
>>> f = Fib()
>>> f[0]
1
但它却没法用切片,
原因是
__getitem__()
传入的参数可能是一个int,也可能是一个切片对象
slice
,所以要做判断:
与之对应的是__setitem__()
方法,把对象视作list或dict来对集合赋值。最后,还有一个__delitem__()
方法,用于删除某个元素。
总之,通过上面的方法,我们自己定义的类表现得和Python自带的list、tuple、dict没什么区别,这完全归功于动态语言的“鸭子类型”,不需要强制继承某个接口
10 __getattr__class Student(object):
def __init__(self):
self.name = 'Michael'
def __getattr__(self, attr):
if attr=='score':
return 99
当调用不存在的属性时,比如score
,Python解释器会试图调用__getattr__(self, 'score')
来尝试获得属性,这样,我们就有机会返回score
的值:
>>> s = Student()
>>> s.name
'Michael'
>>> s.score
99
返回函数也是完全可以的:
class Student(object):
def __getattr__(self, attr):
if attr=='age':
return lambda: 25
只是调用方式要变为:
>>> s.age()
25
注意,只有在没有找到属性的情况下,才调用__getattr__
,已有的属性,比如name
,不会在__getattr__
中查找
如果要写SDK,给每个URL对应的API都写一个方法,那得累死,而且,API一旦改动,SDK也要改。
利用完全动态的__getattr__
,我们可以写出一个链式调用:
class Chain(object):
def __init__(self, path=''):
self._path = path
def __getattr__(self, path):
return Chain('%s/%s' % (self._path, path))
def __str__(self):
return self._path
__repr__ = __str__
试试:
>>> Chain().status.user.timeline.list
'/status/user/timeline/list'
这样,无论API怎么变,SDK都可以根据URL实现完全动态的调用,而且,不随API的增加而改变!
还有些REST API会把参数放到URL中,比如GitHub的API:
GET /users/:user/repos
调用时,需要把:user
替换为实际用户名。如果我们能写出这样的链式调用:
Chain().users('michael').repos
就可以非常方便地调用API了
11 __call__ 任何类,只需要定义一个__call__()
方法,就可以直接对实例进行调用。请看示例:
class Student(object):
def __init__(self, name):
self.name = name
def __call__(self):
print('My name is %s.' % self.name)
调用方式如下:
>>> s = Student('Michael')
>>> s() # self参数不要传入
My name is Michael.
通过
callable()
函数,我们就可以判断一个对象是否是“可调用”对象
>>> callable(max)
True
>>> callable([1, 2, 3])
False
12枚举类
Enum
from enum import Enum
Month = Enum('Month', ('Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec'))
这样我们就获得了Month
类型的枚举类,可以直接使用Month.Jan
来引用一个常量,或者枚举它的所有成员:
for name, member in Month.__members__.items():
print(name, '=>', member, ',', member.value)
value
属性则是自动赋给成员的int
常量,默认从1
开始计数
如果需要更精确地控制枚举类型,可以从Enum
派生出自定义类:
from enum import Enum, unique
@unique
class Weekday(Enum):
Sun = 0 # Sun的value被设定为0
Mon = 1
Tue = 2
Wed = 3
Thu = 4
Fri = 5
Sat = 6
@unique
装饰器可以帮助我们检查保证没有重复值
type()
函数既可以返回一个对象的类型,又可以创建出新的类型,比如,我们可以通过type()
函数创建出Hello
类,而无需通过class Hello(object)...
的定义:
>>> def fn(self, name='world'): # 先定义函数
... print('Hello, %s.' % name)
...
>>> Hello = type('Hello', (object,), dict(hello=fn)) # 创建Hello class >>> h = Hello() >>> h.hello() Hello, world. >>> print(type(Hello)) <class 'type'> >>> print(type(h)) <class '__main__.Hello'>
要创建一个class对象,type()
函数依次传入3个参数:
fn
绑定到方法名hello
上。 通过type()
函数创建的类和直接写class是完全一样的,因为Python解释器遇到class定义时,仅仅是扫描一下class定义的语法,然后调用type()
函数创建出class。
正常情况下,我们都用class Xxx...
来定义类,但是,type()
函数也允许我们动态创建出类来,也就是说,动态语言本身支持运行期动态创建类,这和静态语言有非常大的不同,要在静态语言运行期创建类,必须构造源代码字符串再调用编译器,或者借助一些工具生成字节码实现,本质上都是动态编译,会非常复杂
add
方法:
# metaclass是类的模板,所以必须从`type`类型派生:
class ListMetaclass(type):
def __new__(cls, name, bases, attrs):
attrs['add'] = lambda self, value: self.append(value)
return type.__new__(cls, name, bases, attrs)
有了ListMetaclass,我们在定义类的时候还要指示使用ListMetaclass来定制类,传入关键字参数metaclass
:
class MyList(list, metaclass=ListMetaclass):
pass
当我们传入关键字参数metaclass
时,魔术就生效了,它指示Python解释器在创建MyList
时,要通过ListMetaclass.__new__()
来创建,在此,我们可以修改类的定义,比如,加上新的方法,然后,返回修改后的定义。
__new__()
方法接收到的参数依次是:
当前准备创建的类的对象;
类的名字;
类继承的父类集合;
类的方法集合。
测试一下MyList
是否可以调用add()
方法:
>>> L = MyList()
>>> L.add(1)
>> L
[1]
而普通的list
没有add()
方法:
>>> L2 = list()
>>> L2.add(1)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
AttributeError: 'list' object has no attribute 'add'
ORM就是一个典型的例子。
ORM全称“Object Relational Mapping”,即对象-关系映射,就是把关系数据库的一行映射为一个对象,也就是一个类对应一个表,这样,写代码更简单,不用直接操作SQL语句。
要编写一个ORM框架,所有的类都只能动态定义,因为只有使用者才能根据表的结构定义出对应的类来。
让我们来尝试编写一个ORM框架。
编写底层模块的第一步,就是先把调用接口写出来。比如,使用者如果使用这个ORM框架,想定义一个User
类来操作对应的数据库表User
,我们期待他写出这样的代码:
class User(Model):
# 定义类的属性到列的映射:
id = IntegerField('id')
name = StringField('username')
email = StringField('email')
password = StringField('password')
# 创建一个实例:
u = User(id=12345, name='Michael', email='[email protected]', password='my-pwd')
# 保存到数据库:
u.save()
其中,父类Model
和属性类型StringField
、IntegerField
是由ORM框架提供的,剩下的魔术方法比如save()
全部由metaclass自动完成。虽然metaclass的编写会比较复杂,但ORM的使用者用起来却异常简单。
现在,我们就按上面的接口来实现该ORM。
首先来定义Field
类,它负责保存数据库表的字段名和字段类型:
class Field(object):
def __init__(self, name, column_type):
self.name = name
self.column_type = column_type
def __str__(self):
return '<%s:%s>' % (self.__class__.__name__, self.name)
在Field
的基础上,进一步定义各种类型的Field
,比如StringField
,IntegerField
等等:
class StringField(Field):
def __init__(self, name):
super(StringField, self).__init__(name, 'varchar(100)')
class IntegerField(Field):
def __init__(self, name):
super(IntegerField, self).__init__(name, 'bigint')
下一步,就是编写最复杂的ModelMetaclass
了:
class ModelMetaclass(type):
def __new__(cls, name, bases, attrs):
if name=='Model':
return type.__new__(cls, name, bases, attrs)
print('Found model: %s' % name)
mappings = dict()
for k, v in attrs.items():
if isinstance(v, Field):
print('Found mapping: %s ==> %s' % (k, v))
mappings[k] = v
for k in mappings.keys():
attrs.pop(k)
attrs['__mappings__'] = mappings # 保存属性和列的映射关系
attrs['__table__'] = name # 假设表名和类名一致
return type.__new__(cls, name, bases, attrs)
以及基类Model
:
class Model(dict, metaclass=ModelMetaclass):
def __init__(self, **kw):
super(Model, self).__init__(**kw)
def __getattr__(self, key):
try:
return self[key]
except KeyError:
raise AttributeError(r"'Model' object has no attribute '%s'" % key)
def __setattr__(self, key, value):
self[key] = value
def save(self):
fields = []
params = []
args = []
for k, v in self.__mappings__.items():
fields.append(v.name)
params.append('?')
args.append(getattr(self, k, None))
sql = 'insert into %s (%s) values (%s)' % (self.__table__, ','.join(fields), ','.join(params))
print('SQL: %s' % sql)
print('ARGS: %s' % str(args))
当用户定义一个class User(Model)
时,Python解释器首先在当前类User
的定义中查找metaclass
,如果没有找到,就继续在父类Model
中查找metaclass
,找到了,就使用Model
中定义的metaclass
的ModelMetaclass
来创建User
类,也就是说,metaclass可以隐式地继承到子类,但子类自己却感觉不到。
在ModelMetaclass
中,一共做了几件事情:
排除掉对Model
类的修改;
在当前类(比如User
)中查找定义的类的所有属性,如果找到一个Field属性,就把它保存到一个__mappings__
的dict中,同时从类属性中删除该Field属性,否则,容易造成运行时错误(实例的属性会遮盖类的同名属性);
把表名保存到__table__
中,这里简化为表名默认为类名。
在Model
类中,就可以定义各种操作数据库的方法,比如save()
,delete()
,find()
,update
等等。
我们实现了save()
方法,把一个实例保存到数据库中。因为有表名,属性到字段的映射和属性值的集合,就可以构造出INSERT
语句。
编写代码试试:
u = User(id=12345, name='Michael', email='[email protected]', password='my-pwd')
u.save()
输出如下:
Found model: User
Found mapping: email ==> <StringField:email> Found mapping: password ==> <StringField:password> Found mapping: id ==> <IntegerField:uid> Found mapping: name ==> <StringField:username> SQL: insert into User (password,email,username,id) values (?,?,?,?) ARGS: ['my-pwd', '[email protected]', 'Michael', 12345]
可以看到,save()
方法已经打印出了可执行的SQL语句,以及参数列表,只需要真正连接到数据库,执行该SQL语句,就可以完成真正的功能。
不到100行代码,我们就通过metaclass实现了一个精简的ORM框架