- 人工智能大模型原理与应用实战:大模型在金融风控中的应用
AI天才研究院
LLM大模型落地实战指南大数据人工智能语言模型AILLMJavaPython架构设计AgentRPA
文章目录人工智能大模型原理与应用实战:大模型在金融风控中的应用01.背景介绍1.1金融风控的挑战1.2大模型的优势2.核心概念与联系2.1大模型在金融风控中的应用场景2.2大模型与传统风控技术的结合3.核心算法原理具体操作步骤3.1基于大模型的欺诈检测3.2基于大模型的信用评估4.数学模型和公式详细讲解举例说明4.1逻辑回归模型4.2XGBoost模型5.项目实践:代码实例和详细解释说明5.1基于
- Python打卡:Day24
剑桥折刀s
python打卡python
importpandasaspdimportnumpyasnpimportreimportxgboostasxgbfromsklearn.model_selectionimporttrain_test_splitfromsklearn.metricsimportclassification_report,confusion_matrix,accuracy_score,precision_score
- 【机器学习算法】XGBoost原理
一、基本内容基本内容:GBDT的基础上,在损失函数上加入树模型复杂度的正则项与GBDT一样,也是使用新的弱学习器拟合残差(当前模型负梯度,残差方向)GBDT损失函数Loss=∑i=1NL(yi,yit)Loss=\sum_{i=1}^{N}L(y_i,y_i^{t})Loss=i=1∑NL(yi,yit)XGboost损失函数Loss=∑i=1SL(yi,yit)+∑j=1NΩ(fj))Loss=
- CMake指令:find_package
流星雨爱编程
#CMake工具c++开发语言设计模式自动化编译工具CMake跨平台编译
目录1.简介2.搜索模式3.常用参数4.工作流程5.内置模块示例:FindBoost.cmake6.自定义模块文件(Find.cmake)7.模块模式vs配置模式8.总结相关链接1.简介查找模块(findmodule)是一系列用于搜索第三方依赖软件包(包括库或可执行文件)的模块。对查找模块的引用一般不使用include命令,而是使用find_package命令。基本语法find_package([
- 【CMake基础入门教程】第七课:查找并使用第三方库(以 find_package() 为核心)
奇异果冻
CMake入门学习CMakebashc++开发语言
很好!我们进入第七课:查找并使用第三方库(以find_package()为核心)。本课目标学会使用CMake的find_package()引入外部库;理解find_package背后的机制(Config模式/Module模式);以常用库如OpenCV/Qt/Boost为例进行实战;掌握target_link_libraries()的现代CMake使用方式。一、什么是find_package()?C
- 【机器学习第二期(Python)】优化梯度提升决策树 XGBoost
WW、forever
深度学习原理及代码实现机器学习python决策树
优化梯度提升决策树XGBoost一、XGBoost简介二、原理详解2.1基础思想:改进版GBDT2.2目标函数2.3二阶泰勒展开优化2.4树结构优化三、XGBoost实现步骤(Python)可调参数推荐完整案例代码(回归任务+可视化)参考梯度提升决策树GBDT的原理及Python代码实现可参考另一博客-【机器学习第一期(Python)】梯度提升决策树GBDT。XGBoost(ExtremeGrad
- LightGBM:极速梯度提升机——结构化数据建模的终极武器
大千AI助手
人工智能Python#OTHER随机森林算法机器学习决策树人工智能GBDTLightGBM
基于直方图与Leaf-wise生长的高效GBDT实现,横扫Kaggle与工业场景一、为什么需要LightGBM?GBDT的瓶颈传统梯度提升树(如XGBoost)在处理海量数据时面临两大痛点:训练速度慢:需预排序特征&层次生长(Level-wise)内存消耗高:存储特征值与分裂点信息LightGBM的诞生微软亚洲研究院于2017年开源,核心目标:✅训练效率提升10倍✅内存占用降低50%✅保持与XGB
- Boosting:从理论到实践——集成学习中的偏差征服者
大千AI助手
人工智能Python#OTHER集成学习boosting机器学习tree人工智能ML
核心定位:一种通过串行训练弱学习器、自适应调整数据权重,将多个弱模型组合成强模型的集成学习框架,专注于降低预测偏差。本文由「大千AI助手」原创发布,专注用真话讲AI,回归技术本质。拒绝神话或妖魔化。搜索「大千AI助手」关注我,一起撕掉过度包装,学习真实的AI技术!一、Boosting的本质目标:将一系列弱学习器(仅比随机猜测略好,如浅层决策树)组合成强学习器核心思想:错误驱动学习:后续模型重点修正
- 怎样在pycham上安装XGBoost(windows操作系统)
youxiazzz12
综合大数据深度学习xgboost
搞数据分析、挖掘的时候,网上的代码来了个看到下面的红色下划线,心里一咯噔,最怕这种导入包的问题,又要开始搞配置了。先运行代码看看吧,果然报错:ModuleNotFoundError:Nomodulenamed'xgboost'看来还是得安装这个xgboost。经历了各种痛苦的摸索,终于搞定,还是汇总一下吧。小白的摸索太过痛苦了,汇总一下大家共勉。弯路就不放出来了,全是泪。直接讲正确路径有一些初步准
- XGBoost算法原理及Python实现
法号清水
算法python开发语言
一、概述 XGBoost是一种基于梯度提升框架的机器学习算法,它通过迭代地训练一系列决策树来构建模型。核心思想是通过不断地在已有模型的基础上,拟合负梯度方向的残差(真实值与预测值的差)来构建新的弱学习器,达到逐步优化模型的目的。 XGBoost在构建决策树时,利用了二阶导数信息。在损失函数的优化过程中,不仅考虑了一阶导数(梯度),还引入了二阶导数(海森矩阵),这使得算法能够更精确地找到损失函数
- 如何在Python上安装xgboost?
cda2024
python开发语言
在数据科学和机器学习领域,XGBoost无疑是一款备受推崇的算法工具。它以其高效、灵活和精确的特点,成为了众多数据科学家和工程师的首选。然而,对于初学者来说,如何在Python环境中成功安装XGBoost可能会成为一个挑战。本文将详细指导你在Python上安装XGBoost的过程,帮助你快速上手这一强大的机器学习工具。为什么选择XGBoost?在深入了解安装过程之前,我们先来看看XGBoost为何
- 如何在Python上安装xgboost?
cda2024
python开发语言
在数据科学和机器学习领域,XGBoost无疑是一款备受推崇的算法工具。它以其高效、灵活和精确的特点,成为了众多数据科学家和工程师的首选。然而,对于初学者来说,如何在Python环境中成功安装XGBoost可能会成为一个挑战。本文将详细指导你在Python上安装XGBoost的过程,帮助你快速上手这一强大的机器学习工具。为什么选择XGBoost?在深入了解安装过程之前,我们先来看看XGBoost为何
- GBDT:梯度提升决策树——集成学习中的预测利器
大千AI助手
人工智能Python#OTHER决策树集成学习算法GBDT梯度提升人工智能机器学习
核心定位:一种通过串行集成弱学习器(决策树)、以梯度下降方式逐步逼近目标函数的机器学习算法,在结构化数据预测任务中表现出色。本文由「大千AI助手」原创发布,专注用真话讲AI,回归技术本质。拒绝神话或妖魔化。搜索「大千AI助手」关注我,一起撕掉过度包装,学习真实的AI技术!一、GBDT是什么?全称:GradientBoostingDecisionTree(梯度提升决策树)本质:Boosting集成学
- 梯度增强与XGBoost算法解析
weixin_47233946
算法算法
##一、梯度增强(GradientBoosting)原理###1.1集成学习与Boosting集成学习通过结合多个弱模型提升整体性能,主要包括Bagging(如随机森林)和Boosting两类方法。**梯度增强**属于Boosting家族,核心思想是**串行训练模型,每一步修正前序模型的残差**,最终形成强预测器。###1.2算法核心流程1.**初始化基模型**:用常数(如目标变量均值)预测。2.
- C++(个人学习总结,不断更新......)
一、初识C++1.1C++简介C++是由BjarneStroustrup研发的,在计算机编程语言中,C++兼容了c语言,又增加了面向对象的机制,同时拥有丰富的库,有标准模板库STL以及很多第三方库,STL中有set、map、hash等容器,第三方库中有Boost库、图形库QT、图库像处理库Opencv、机械学习库Tensorflow等,这些库可以为嵌入式开发提供非常大的支持。1.2C++程序编写#
- 《解锁Vcpkg国内镜像源:C++开发者的速度秘籍》
空云风语
QT人工智能c++开发语言
一、Vcpkg初相识在C++开发的广袤世界里,Vcpkg犹如一把神奇的钥匙,为开发者们打开了便捷之门,尤其是在依赖管理方面,发挥着举足轻重的作用。包管理工具对于C++开发而言,是至关重要的存在。C++作为一门强大且广泛应用的编程语言,在开发过程中常常需要依赖众多的第三方库。这些库涵盖了各种功能领域,比如网络通信、图形处理、数据结构与算法等。以网络通信为例,开发网络应用程序时,可能会用到像Boost
- 机器学习15-XGBoost
吹风看太阳
机器学习机器人人工智能
XGBOOST学习笔记一、引言在机器学习的集成学习算法中,XGBoost(eXtremeGradientBoosting)凭借其高效性、可扩展性和卓越的性能,成为数据科学竞赛和工业界应用的热门选择。XGBoost本质上是一种基于梯度提升框架(GradientBoostingFramework)的机器学习算法,它通过不断拟合残差来构建多个弱学习器(通常是决策树),并将这些弱学习器进行累加,从而形成一
- dlib安装失败经验总结,最后成功
awucool
dlibwindowspythonai神经网络
安装dlib之前别忘了安装cmake和boost,安装指令如下pipinstallcmakepipinstallboost如果还是不行,尝试以下方法可能性1:没有安装visualstudioC++,上官网可能性2:用pipinstalldlib时报出code1的错误,然后一片红可以尝试去githubdlibhttps://github.com/datamagic2020/Install-dlib里
- C++的智能指针
月殇_木言
C++c++算法开发语言
目录1.智能指针的应用场景2.内存泄漏3.智能指针的使用及原理3.1RAII3.2智能指针实例4.STL中的智能指针4.1.C++11和boost中智能指针的关系4.1.1Boost库的源起4.1.2智能指针4.2.std::auto_ptr4.3.std::unique_ptr4.4.std::shared_ptr4.4.1.使用及模拟实现4.4.2.循环引用问题4.5.std::weak_pt
- 嵌入式工程师必学(125):Buck/Boost/Flyback/LLC开关电源
芯片-嵌入式
嵌入式硬件
概述:家庭和办公室使用的电气产品(如电视、大型电器和加热器)的设计师需要最大限度地提高其设计的能源效率,以满足立法和市场需求。遵守电磁兼容性(EMC)和安全规范也是一个关键问题。由于固有的低能量损失和开关噪声,谐振功率转换器可以帮助满足这两个要求。简单的转换器拓扑结构,如降压、升压和反激式,使用脉宽调制来调节输出电压,具有“硬”开关:在调制开关打开时,设备主通道上存在最大电压。硬开关电压和电流波形
- LightGBM 与 XGBoost 深度解析:从基础原理到实战优化
爱看烟花的码农
ML集成学习机器学习人工智能
LightGBM与XGBoost深度解析:从基础原理到实战优化引言梯度提升机(GradientBoostingMachine,GBM)及其衍生算法,如XGBoost和LightGBM,是当今机器学习领域中应用最为广泛且效果卓越的监督学习模型之一。然而,许多学习者在初次接触这些算法时,往往对其复杂的内部机制感到困惑,难以形成深刻理解,常常止步于对算法流程的死记硬背。本教程旨在深入浅出地剖析GBDT(
- CART算法全解析:分类回归双修的决策树之王
大千AI助手
人工智能Python#OTHER算法分类回归决策树数据挖掘CARTDecisionTree
CART(ClassificationandRegressionTrees)是决策树领域的里程碑算法,由统计学家Breiman等人在1984年提出。作为当今最主流的决策树实现,它革命性地统一了分类与回归任务,其二叉树结构和剪枝技术成为现代集成学习(如随机森林、XGBoost)的基石。本文由「大千AI助手」原创发布,专注用真话讲AI,回归技术本质。拒绝神话或妖魔化。搜索「大千AI助手」关注我,一起撕
- OPENPPP2 通用有栈协程架构探秘(C++ 高级编程指南)
liulilittle
MarkdownC/C++Extension架构c++开发语言协程协同程序并行网络
OPENPPP2通用有栈协程架构探秘原理图管理11底层切换11YieldContext-状态机s_-调用者上下文caller_-协程上下文callee_-栈内存stack_-执行器context_-线程绑定strand_«底层库»BoostContextfcontext/jump_fcontext«用户函数»SpawnHandler用户协程函数整体架构图️主线程io_contextYieldCon
- python3.6安装dlib_安装与编译Dlib(以Ubuntu16.04+Python3.6+pip为例)
weixin_39967996
python3.6安装dlib
安装与编译Dlib(以Ubuntu16.04+Python3.6+pip为例)Step1:下载Ubuntu(orLinux)系统支持库=>InstallOSlibrariessudoapt-getinstallbuild-essentialcmakepkg-configlibx11-devlibatlas-base-devlibgtk-3-devlibboost-python-devStep2:安
- 在linux安装MySQL 8.0.42 源码步骤
DBA老曾
MySQLlinuxmysqldba
1、主机信息root@u24-mysql-50:~/soft#cat/etc/issueUbuntu24.04.2LTS\n\l2、mysql版本mysql-boost-8.0.42.tar.gz3、mysql编译参数aptinstall-ygccg++makecmake\libncurses-devlibssl-dev\libaio-devlibnuma-dev\zlib1g-devbisonc
- 【机器学习】机器学习重要分支——集成学习:理论、算法与实践
E绵绵
Everything机器学习集成学习算法pythonAIGC人工智能应用
文章目录引言第一章集成学习的基本概念1.1什么是集成学习1.2集成学习的类型1.3集成学习的优势第二章集成学习的核心算法2.1Bagging方法2.2Boosting方法2.3Stacking方法第三章集成学习的应用实例3.1图像分类3.2文本分类第四章集成学习的未来发展与挑战4.1模型多样性与集成策略4.2大规模数据与计算资源4.3集成学习的解释性与可视化结论引言集成学习(EnsembleLea
- python简单的预测模型_python简单预测模型
HOWARD ZHOU
python简单的预测模型
python简单预测模型步骤1:导入所需的库,读取测试和训练数据集。#导入pandas、numpy包,导入LabelEncoder、random、RandomForestClassifier、GradientBoostingClassifier函数importpandasaspdimportnumpyasnpfromsklearn.preprocessingimportLabelEncoderim
- 提升系统稳定性和可靠性的特殊线程(看门狗线程)
编程小能手@
看门狗线程C++系统稳定性
文章目录C++提升系统稳定性和可靠性的特殊线程(看门狗线程)一、引言二、看门狗线程的基本概念1.定义与作用2.与硬件看门狗的区别三、看门狗线程的核心实现1.基础框架设计2.关键实现细节喂狗机制安全启动与停止四、高级应用场景1.多组件监控2.防止死锁检测五、性能优化与安全考虑1.降低系统开销2.防止误触发六、实际应用案例1.工业控制系统2.高可用服务器七、开源库推荐1.Boost.Thread2.A
- C++ - 使用Websocket++编写客户端连接WebSocket服务器并进行通信
huang714
初学者学习SQLSERVERTCP/IOCP/Socket
文章目录1库依赖2根据官方示例代码修改封装的WebsocketClient类2.1WebsocketClient代码2.2WebsocketClient类使用代码3Websocket++官方编写客户端示例教程4与Websocket++官方示例客户端的不同1库依赖Websocket++/Websocketpp依赖于boost(使用boost1.74),Websocket++0.8.2版本,因为暂时没
- AdaBoost第m轮弱分类器的样本权重与第m-1轮的强分类器之间的关系证明
LaoYuanPython
零基础机器学习入门老猿Python机器学习人工智能AdaBoost自适应提升算法深度学习AI
☞░前往老猿Python博客░https://blog.csdn.net/LaoYuanPython一.AdaBoost概述AdaBoost从弱学习算法出发,通过多轮迭代,反复学习,得到一系列弱分类器(又称为基本分类器),然后组合这些弱分类器,构成一个强分类器,具体算法和原理请参考《提升方法AdaBoost自适应提升算法(https://blog.csdn.net/LaoYuanPython/ar
- 枚举的构造函数中抛出异常会怎样
bylijinnan
javaenum单例
首先从使用enum实现单例说起。
为什么要用enum来实现单例?
这篇文章(
http://javarevisited.blogspot.sg/2012/07/why-enum-singleton-are-better-in-java.html)阐述了三个理由:
1.enum单例简单、容易,只需几行代码:
public enum Singleton {
INSTANCE;
- CMake 教程
aigo
C++
转自:http://xiang.lf.blog.163.com/blog/static/127733322201481114456136/
CMake是一个跨平台的程序构建工具,比如起自己编写Makefile方便很多。
介绍:http://baike.baidu.com/view/1126160.htm
本文件不介绍CMake的基本语法,下面是篇不错的入门教程:
http:
- cvc-complex-type.2.3: Element 'beans' cannot have character
Cb123456
springWebgis
cvc-complex-type.2.3: Element 'beans' cannot have character
Line 33 in XML document from ServletContext resource [/WEB-INF/backend-servlet.xml] is i
- jquery实例:随页面滚动条滚动而自动加载内容
120153216
jquery
<script language="javascript">
$(function (){
var i = 4;$(window).bind("scroll", function (event){
//滚动条到网页头部的 高度,兼容ie,ff,chrome
var top = document.documentElement.s
- 将数据库中的数据转换成dbs文件
何必如此
sqldbs
旗正规则引擎通过数据库配置器(DataBuilder)来管理数据库,无论是Oracle,还是其他主流的数据都支持,操作方式是一样的。旗正规则引擎的数据库配置器是用于编辑数据库结构信息以及管理数据库表数据,并且可以执行SQL 语句,主要功能如下。
1)数据库生成表结构信息:
主要生成数据库配置文件(.conf文
- 在IBATIS中配置SQL语句的IN方式
357029540
ibatis
在使用IBATIS进行SQL语句配置查询时,我们一定会遇到通过IN查询的地方,在使用IN查询时我们可以有两种方式进行配置参数:String和List。具体使用方式如下:
1.String:定义一个String的参数userIds,把这个参数传入IBATIS的sql配置文件,sql语句就可以这样写:
<select id="getForms" param
- Spring3 MVC 笔记(一)
7454103
springmvcbeanRESTJSF
自从 MVC 这个概念提出来之后 struts1.X struts2.X jsf 。。。。。
这个view 层的技术一个接一个! 都用过!不敢说哪个绝对的强悍!
要看业务,和整体的设计!
最近公司要求开发个新系统!
- Timer与Spring Quartz 定时执行程序
darkranger
springbean工作quartz
有时候需要定时触发某一项任务。其实在jdk1.3,java sdk就通过java.util.Timer提供相应的功能。一个简单的例子说明如何使用,很简单: 1、第一步,我们需要建立一项任务,我们的任务需要继承java.util.TimerTask package com.test; import java.text.SimpleDateFormat; import java.util.Date;
- 大端小端转换,le32_to_cpu 和cpu_to_le32
aijuans
C语言相关
大端小端转换,le32_to_cpu 和cpu_to_le32 字节序
http://oss.org.cn/kernel-book/ldd3/ch11s04.html
小心不要假设字节序. PC 存储多字节值是低字节为先(小端为先, 因此是小端), 一些高级的平台以另一种方式(大端)
- Nginx负载均衡配置实例详解
avords
[导读] 负载均衡是我们大流量网站要做的一个东西,下面我来给大家介绍在Nginx服务器上进行负载均衡配置方法,希望对有需要的同学有所帮助哦。负载均衡先来简单了解一下什么是负载均衡,单从字面上的意思来理解就可以解 负载均衡是我们大流量网站要做的一个东西,下面我来给大家介绍在Nginx服务器上进行负载均衡配置方法,希望对有需要的同学有所帮助哦。
负载均衡
先来简单了解一下什么是负载均衡
- 乱说的
houxinyou
框架敏捷开发软件测试
从很久以前,大家就研究框架,开发方法,软件工程,好多!反正我是搞不明白!
这两天看好多人研究敏捷模型,瀑布模型!也没太搞明白.
不过感觉和程序开发语言差不多,
瀑布就是顺序,敏捷就是循环.
瀑布就是需求、分析、设计、编码、测试一步一步走下来。而敏捷就是按摸块或者说迭代做个循环,第个循环中也一样是需求、分析、设计、编码、测试一步一步走下来。
也可以把软件开发理
- 欣赏的价值——一个小故事
bijian1013
有效辅导欣赏欣赏的价值
第一次参加家长会,幼儿园的老师说:"您的儿子有多动症,在板凳上连三分钟都坐不了,你最好带他去医院看一看。" 回家的路上,儿子问她老师都说了些什么,她鼻子一酸,差点流下泪来。因为全班30位小朋友,惟有他表现最差;惟有对他,老师表现出不屑,然而她还在告诉她的儿子:"老师表扬你了,说宝宝原来在板凳上坐不了一分钟,现在能坐三分钟。其他妈妈都非常羡慕妈妈,因为全班只有宝宝
- 包冲突问题的解决方法
bingyingao
eclipsemavenexclusions包冲突
包冲突是开发过程中很常见的问题:
其表现有:
1.明明在eclipse中能够索引到某个类,运行时却报出找不到类。
2.明明在eclipse中能够索引到某个类的方法,运行时却报出找不到方法。
3.类及方法都有,以正确编译成了.class文件,在本机跑的好好的,发到测试或者正式环境就
抛如下异常:
java.lang.NoClassDefFoundError: Could not in
- 【Spark七十五】Spark Streaming整合Flume-NG三之接入log4j
bit1129
Stream
先来一段废话:
实际工作中,业务系统的日志基本上是使用Log4j写入到日志文件中的,问题的关键之处在于业务日志的格式混乱,这给对日志文件中的日志进行统计分析带来了极大的困难,或者说,基本上无法进行分析,每个人写日志的习惯不同,导致日志行的格式五花八门,最后只能通过grep来查找特定的关键词缩小范围,但是在集群环境下,每个机器去grep一遍,分析一遍,这个效率如何可想之二,大好光阴都浪费在这上面了
- sudoku solver in Haskell
bookjovi
sudokuhaskell
这几天没太多的事做,想着用函数式语言来写点实用的程序,像fib和prime之类的就不想提了(就一行代码的事),写什么程序呢?在网上闲逛时发现sudoku游戏,sudoku十几年前就知道了,学生生涯时也想过用C/Java来实现个智能求解,但到最后往往没写成,主要是用C/Java写的话会很麻烦。
现在写程序,本人总是有一种思维惯性,总是想把程序写的更紧凑,更精致,代码行数最少,所以现
- java apache ftpClient
bro_feng
java
最近使用apache的ftpclient插件实现ftp下载,遇见几个问题,做如下总结。
1. 上传阻塞,一连串的上传,其中一个就阻塞了,或是用storeFile上传时返回false。查了点资料,说是FTP有主动模式和被动模式。将传出模式修改为被动模式ftp.enterLocalPassiveMode();然后就好了。
看了网上相关介绍,对主动模式和被动模式区别还是比较的模糊,不太了解被动模
- 读《研磨设计模式》-代码笔记-工厂方法模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
package design.pattern;
/*
* 工厂方法模式:使一个类的实例化延迟到子类
* 某次,我在工作不知不觉中就用到了工厂方法模式(称为模板方法模式更恰当。2012-10-29):
* 有很多不同的产品,它
- 面试记录语
chenyu19891124
招聘
或许真的在一个平台上成长成什么样,都必须靠自己去努力。有了好的平台让自己展示,就该好好努力。今天是自己单独一次去面试别人,感觉有点小紧张,说话有点打结。在面试完后写面试情况表,下笔真的好难,尤其是要对面试人的情况说明真的好难。
今天面试的是自己同事的同事,现在的这个同事要离职了,介绍了我现在这位同事以前的同事来面试。今天这位求职者面试的是配置管理,期初看了简历觉得应该很适合做配置管理,但是今天面
- Fire Workflow 1.0正式版终于发布了
comsci
工作workflowGoogle
Fire Workflow 是国内另外一款开源工作流,作者是著名的非也同志,哈哈....
官方网站是 http://www.fireflow.org
经过大家努力,Fire Workflow 1.0正式版终于发布了
正式版主要变化:
1、增加IWorkItem.jumpToEx(...)方法,取消了当前环节和目标环节必须在同一条执行线的限制,使得自由流更加自由
2、增加IT
- Python向脚本传参
daizj
python脚本传参
如果想对python脚本传参数,python中对应的argc, argv(c语言的命令行参数)是什么呢?
需要模块:sys
参数个数:len(sys.argv)
脚本名: sys.argv[0]
参数1: sys.argv[1]
参数2: sys.argv[
- 管理用户分组的命令gpasswd
dongwei_6688
passwd
NAME: gpasswd - administer the /etc/group file
SYNOPSIS:
gpasswd group
gpasswd -a user group
gpasswd -d user group
gpasswd -R group
gpasswd -r group
gpasswd [-A user,...] [-M user,...] g
- 郝斌老师数据结构课程笔记
dcj3sjt126com
数据结构与算法
<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
- yii2 cgridview加上选择框进行操作
dcj3sjt126com
GridView
页面代码
<?=Html::beginForm(['controller/bulk'],'post');?>
<?=Html::dropDownList('action','',[''=>'Mark selected as: ','c'=>'Confirmed','nc'=>'No Confirmed'],['class'=>'dropdown',])
- linux mysql
fypop
linux
enquiry mysql version in centos linux
yum list installed | grep mysql
yum -y remove mysql-libs.x86_64
enquiry mysql version in yum repositoryyum list | grep mysql oryum -y list mysql*
install mysq
- Scramble String
hcx2013
String
Given a string s1, we may represent it as a binary tree by partitioning it to two non-empty substrings recursively.
Below is one possible representation of s1 = "great":
- 跟我学Shiro目录贴
jinnianshilongnian
跟我学shiro
历经三个月左右时间,《跟我学Shiro》系列教程已经完结,暂时没有需要补充的内容,因此生成PDF版供大家下载。最近项目比较紧,没有时间解答一些疑问,暂时无法回复一些问题,很抱歉,不过可以加群(334194438/348194195)一起讨论问题。
----广告-----------------------------------------------------
- nginx日志切割并使用flume-ng收集日志
liyonghui160com
nginx的日志文件没有rotate功能。如果你不处理,日志文件将变得越来越大,还好我们可以写一个nginx日志切割脚本来自动切割日志文件。第一步就是重命名日志文件,不用担心重命名后nginx找不到日志文件而丢失日志。在你未重新打开原名字的日志文件前,nginx还是会向你重命名的文件写日志,linux是靠文件描述符而不是文件名定位文件。第二步向nginx主
- Oracle死锁解决方法
pda158
oracle
select p.spid,c.object_name,b.session_id,b.oracle_username,b.os_user_name from v$process p,v$session a, v$locked_object b,all_objects c where p.addr=a.paddr and a.process=b.process and c.object_id=b.
- java之List排序
shiguanghui
list排序
在Java Collection Framework中定义的List实现有Vector,ArrayList和LinkedList。这些集合提供了对对象组的索引访问。他们提供了元素的添加与删除支持。然而,它们并没有内置的元素排序支持。 你能够使用java.util.Collections类中的sort()方法对List元素进行排序。你既可以给方法传递
- servlet单例多线程
utopialxw
单例多线程servlet
转自http://www.cnblogs.com/yjhrem/articles/3160864.html
和 http://blog.chinaunix.net/uid-7374279-id-3687149.html
Servlet 单例多线程
Servlet如何处理多个请求访问?Servlet容器默认是采用单实例多线程的方式处理多个请求的:1.当web服务器启动的