作者:谭东
机器学习常用算法:
1)决策树(Decision Tree)
决策树是一种树形结构,为人们提供决策依据,决策树可以用来回答yes和no问题,它通过树形结构将各种情况组合都表示出来,每个分支表示一次选择(选择yes还是no),直到所有选择都进行完毕,最终给出正确答案。
决策树(decision tree)是一个树结构(可以是二叉树或非二叉树)。在实际构造决策树时,通常要进行剪枝,这时为了处理由于数据中的噪声和离群点导致的过分拟合问题。剪枝有两种:
先剪枝——在构造过程中,当某个节点满足剪枝条件,则直接停止此分支的构造。
后剪枝——先构造完成完整的决策树,再通过某些条件遍历树进行剪枝。
2)朴素贝叶斯分类器(Naive Bayesian Model,NBM)
朴素贝叶斯分类器基于贝叶斯定理及其假设(即特征之间是独立的,是不相互影响的),主要用来解决分类和回归问题。
P(A|B) 是后验概率, P(B|A) 是似然,P(A)为先验概率,P(B) 为我们要预测的值。
具体应用有:标记一个电子邮件为垃圾邮件或非垃圾邮件;将新闻文章分为技术类、政治类或体育类;检查一段文字表达积极的情绪,或消极的情绪;用于人脸识别软件。
学过概率的同学一定都知道贝叶斯定理,这个在250多年前发明的算法,在信息领域内有着无与伦比的地位。贝叶斯分类是一系列分类算法的总称,这类算法均以贝叶斯定理为基础,故统称为贝叶斯分类。朴素贝叶斯算法(Naive Bayesian) 是其中应用最为广泛的分类算法之一。朴素贝叶斯分类器基于一个简单的假定:给定目标值时属性之间相互条件独立。
通过以上定理和“朴素”的假定,我们知道:
P( Category | Document) = P ( Document | Category ) * P( Category) / P(Document)
举个例子,给一段文字,返回情感分类,这段文字的态度是positive,还是negative。
为了解决这个问题,可以只看其中的一些单词。
这段文字,将仅由一些单词和它们的计数代表。
原始问题是:给你一句话,它属于哪一类?
通过 bayes rules 变成一个比较简单容易求得的问题。
问题变成,这一类中这句话出现的概率是多少,当然,别忘了公式里的另外两个概率。
例子:单词love在positive 的情况下出现的概率是0.1,在negative的情况下出现的概率是 0.001。
后面将给大家详细讲解朴素贝叶斯分类算法。
3)最小二乘法(Least squares)
如果你对统计学有所了解,那么你必定听说过线性回归。最小均方就是用来求线性回归的。如下图所示,平面内会有一系列点,然后我们求取一条线,使得这条线尽可能拟合这些点分布,这就是线性回归。这条线有多种找法,最小二乘法就是其中一种。最小二乘法其原理如下,找到一条线使得平面内的所有点到这条线的欧式距离和最小。这条线就是我们要求取得线。
最小二乘法(又称最小平方法)是一种数学优化技术。它通过最小化误差的平方和寻找数据的最佳函数匹配。利用最小二乘法可以简便地求得未知的数据,并使得这些求得的数据与实际数据之间误差的平方和为最小。最小二乘法还可用于曲线拟合。其他一些优化问题也可通过最小化能量或最大化熵用最小二乘法来表达。
4)逻辑回归(Logistic Regression)
逻辑回归模型是一个二分类模型,它选取不同的特征与权重来对样本进行概率分类,用一个log函数计算样本属于某一类的概率。即一个样本会有一定的概率属于一个类,会有一定的概率属于另一类,概率大的类即为样本所属类。用于估计某种事物的可能性。
5)支持向量机(SVM)
支持向量机(support vector machine)是一个二分类算法,它可以在N维空间找到一个(N-1)维的超平面,这个超平面可以将这些点分为两类。也就是说,平面内如果存在线性可分的两类点,SVM可以找到一条最优的直线将这些点分开。SVM应用范围很广。
要将两类分开,想要得到一个超平面,最优的超平面是到两类的margin达到最大,margin就是超平面与离它最近一点的距离,如下图,Z2>Z1,所以绿色的超平面比较好。
6)集成学习(Ensemble Learning)
集成学习就是将很多分类器集成在一起,每个分类器有不同的权重,将这些分类器的分类结果合并在一起,作为最终的分类结果。最初集成方法为贝叶斯决策。
集成算法用一些相对较弱的学习模型独立地就同样的样本进行训练,然后把结果整合起来进行整体预测。集成算法的主要难点在于究竟集成哪些独立的较弱的学习模型以及如何把学习结果整合起来。这是一类非常强大的算法,同时也非常流行。常见的算法包括:Boosting, Bootstrapped Aggregation(Bagging), AdaBoost,堆叠泛化(Stacked Generalization, Blending),梯度推进机(Gradient Boosting Machine, GBM),随机森林(Random Forest)。
那么集成方法是怎样工作的,为什么他们会优于单个的模型?
7)聚类算法
聚类算法就是将一堆数据进行处理,根据它们的相似性对数据进行聚类。
聚类,就像回归一样,有时候人们描述的是一类问题,有时候描述的是一类算法。聚类算法通常按照中心点或者分层的方式对输入数据进行归并。所以的聚类算法都试图找到数据的内在结构,以便按照最大的共同点将数据进行归类。常见的聚类算法包括 k-Means算法以及期望最大化算法(Expectation Maximization, EM)。
聚类算法有很多种,具体如下:中心聚类、关联聚类、密度聚类、概率聚类、降维、神经网络/深度学习。
8)主成分分析(Principal Component Analysis,PCA)
主成分分析是利用正交变换将一些列可能相关数据转换为线性无关数据,从而找到主成分。PCA方法最著名的应用应该是在人脸识别中特征提取及数据降维。
PCA主要用于简单学习与可视化中数据压缩、简化。但是PCA有一定的局限性,它需要你拥有特定领域的相关知识。对噪音比较多的数据并不适用。
9)SVD矩阵分解(Singular Value Decomposition)
也叫奇异值分解(Singular Value Decomposition),是线性代数中一种重要的矩阵分解,是矩阵分析中正规矩阵酉对角化的推广。在信号处理、统计学等领域有重要应用。SVD矩阵是一个复杂的实复负数矩阵,给定一个m行、n列的矩阵M,那么M矩阵可以分解为M = UΣV。U和V是酉矩阵,Σ为对角阵。
PCA实际上就是一个简化版本的SVD分解。在计算机视觉领域,第一个脸部识别算法就是基于PCA与SVD的,用特征对脸部进行特征表示,然后降维、最后进行面部匹配。尽管现在面部识别方法复杂,但是基本原理还是类似的。
10)独立成分分析(ICA)
独立成分分析(Independent Component Analysis,ICA)是一门统计技术,用于发现存在于随机变量下的隐性因素。ICA为给观测数据定义了一个生成模型。在这个模型中,其认为数据变量是由隐性变量,经一个混合系统线性混合而成,这个混合系统未知。并且假设潜在因素属于非高斯分布、并且相互独立,称之为可观测数据的独立成分。
ICA与PCA相关,但它在发现潜在因素方面效果良好。它可以应用在数字图像、档文数据库、经济指标、心里测量等。
上图为基于ICA的人脸识别模型。实际上这些机器学习算法并不是全都像想象中一样复杂,有些还和高中数学紧密相关。
后面讲给大家一一详细单独讲解这些常用算法。