435. Non-overlapping Intervals

题目:

435. Non-overlapping Intervals

  • Total Accepted: 10154 
  • Total Submissions: 25196 
  • Difficulty: Medium
  • Contributors: love_Fawn

Given a collection of intervals, find the minimum number of intervals you need to remove to make the rest of the intervals non-overlapping.

Note:

  1. You may assume the interval's end point is always bigger than its start point.
  2. Intervals like [1,2] and [2,3] have borders "touching" but they don't overlap each other.

Example 1:

Input: [ [1,2], [2,3], [3,4], [1,3] ]

Output: 1

Explanation: [1,3] can be removed and the rest of intervals are non-overlapping.

Example 2:

Input: [ [1,2], [1,2], [1,2] ]

Output: 2

Explanation: You need to remove two [1,2] to make the rest of intervals non-overlapping.

Example 3:

Input: [ [1,2], [2,3] ]

Output: 0

Explanation: You don't need to remove any of the intervals since they're already non-overlapping.

解题思路:

此题和上次做的Minimum Number of Arrows to Burst Balloons是类似的,这题和上课讲的开会的例子就基本一样, 本题要求删除最少使得剩下的不重叠,开会的例子是要求最多的不重叠的数目,其实本质是一样的。做法都是先按照终止点从小到大排序,再比较每一个的起点是否小于上一个终止点,如果是则与上一个重叠,需要删除;如果不是,则不需要删除,上一个终止点更改为这个的终止点。代码也和上次做的题目差不多,再做一次类似的题目就当熟悉一下吧...


代码:

/**
 * Definition for an interval.
 * struct Interval {
 *     int start;
 *     int end;
 *     Interval() : start(0), end(0) {}
 *     Interval(int s, int e) : start(s), end(e) {}
 * };
 */
class Solution {
public:
    int eraseOverlapIntervals(vector<Interval>& intervals) {
    	if(intervals.size() == 0)
    		return 0;
    	int count = 0;
        sort(intervals.begin(), intervals.end(), comp);
        int last_end = intervals[0].end;
        for(int i = 1; i < intervals.size(); i++){
        	if(intervals[i].start < last_end){
        		count++;
        		continue;
        	}
        	last_end = intervals[i].end;
        }
        return count;
    }

    static bool comp(Interval a, Interval b){
    	return a.end == b.end ? a.start < b.start : a.end < b.end;
    }

};



你可能感兴趣的:(Algorithm,greedy)