- 【揭秘】什么是AI写作?AI写作是助手还是威胁?
ychenhub
AIGCAI写作AIGCAI写作ai写作
什么是AI写作?AI写作是指利用人工智能技术,特别是自然语言处理(NLP)和机器学习(ML)技术,结合深度学习算法,通过大规模语料库和预训练模型来模仿和生成人类语言文本内容的过程。它通过分析大量的语言数据、学习语言的模式、规律和结构,从而能够掌握语法、词汇、句子结构等语言要素,并生成与输入数据相似或符合特定需求的文本内容。AI写作可以应用于多种场景,如新闻报道、广告文案、社交媒体推文、小说创作、诗
- 人工智能入门(1)
反方向的钟儿
人工智能人工智能nlp大数据云计算计算机视觉深度学习机器学习
人工智能导引文章目录人工智能导引artifiicialintelligence由图灵测试出发的六个领域贝叶斯方法分析成为大多数AI系统中不确定推理的现代方法基础研究方法机器学习计算机利用已经有的数据样本,得出某种规律模型,并利用模型预测未来的一种方法==回归算法==线性回归和逻辑回归神经网络ANN人工神经网络模型支持向量机SVM聚类计算机视觉自然语言处理NLP==群体智能==目前主要的两种方法是=
- 魔高一尺,道高一丈:中文语境下的 AI 创作与反抄袭攻防战
海棠AI实验室
“智理探索“-深入AI理论与学术创新人工智能深度学习AI抄袭
目录引言:AI创作浪潮下的“隐形战争”AI创作的“阿喀琉斯之踵”:为何能被检测?检测技术的“火眼金睛”:从统计到深度学习反检测的“隐身术”:AI如何“瞒天过海”?技术之外的博弈:伦理、法律与公平性未来之路:走向共生还是持续对抗?结语:重新定义创造力的时代在数字时代的浪潮中,人工智能(AI)正以前所未有的速度渗透到我们生活的方方面面。从文心一言到ChatGPT,大型语言模型(LLMs)不仅能与我们流
- 优化算法深度剖析:梯度下降、动量方法与自适应学习率
KangkangLoveNLP
#正则化基础知识算法学习人工智能深度学习transformer机器学习pytorch
深度学习中常见的优化算法1.基础优化算法1.1梯度下降(GradientDescent)通过计算损失函数对参数的梯度,沿着梯度下降的方向更新模型参数,直到找到最小值或足够接近最小值的解。其核心思想是基于损失函数的梯度方向来调整参数,以最小化损失。1.1.2基本原理梯度下降的核心思想是基于损失函数的梯度方向来调整参数。具体来说,它通过计算损失函数对参数的梯度,沿着梯度下降的方向更新模型参数,直到找到
- 如何使用深度学习目标检测算法Yolov5训练反光衣数据集模型识别检测反光衣及其他衣服
目标检测数据集合
行为类别睡觉姿态课堂等深度学习目标检测算法
目标检测算法Yolov5训练反光衣数据集模型建立基于深度学习yolov5反光衣的检测文章目录**标题:基于YOLOv5的反光衣检测全流程参考****1.安装依赖****2.准备数据集**数据集结构示例创建`data.yaml`文件**3.配置并训练YOLOv5模型**训练模型模型评估**4.推理代码****5.构建GUI应用程序**反光衣数据集格式txt:两个类别反光衣和其他衣服标注:txt格式)
- 2025年大模型学习路线:神仙级教程无私分享,助你成为AI领域高手!大模型学习路线就看这一篇就够了!
大模型入门教程
学习人工智能AI大模型大模型大模型学习大模型教程程序员
大模型学习路线图第一阶段:基础知识准备在这个阶段,您需要打下坚实的数学基础和编程基础,这是学习任何机器学习和深度学习技术所必需的。1.数学基础线性代数:矩阵运算、向量空间、特征值与特征向量等。概率统计:随机变量、概率分布、贝叶斯定理等。微积分:梯度、偏导数、积分等。学习资料书籍:GilbertStrang,《线性代数及其应用》SheldonRoss,《概率论与随机过程》在线课程:KhanAcade
- 《动手学深度学习》之卷积神经网络
QxwOnly
人工智能深度学习神经网络深度学习
文章目录从全连接层到卷积不变性限制多层感知机平移不变性局部性卷积通道图像卷积互相关运算特征映射和感受野填充和步幅填充步幅多输入多输出通道多输入通道1×11\times11×1卷积层汇聚层最大汇聚层和平均汇聚层卷积神经网络(LeNet)LeNet总结从全连接层到卷积卷积神经网络(convolutionalneuralnetworks,CNN)是机器学习利用自然图像中一些已知结构的创造性方法。不变性计
- 深度学习 Deep Learning 第12章 深度学习的主流应用
odoo中国
人工智能AI编程深度学习人工智能
深度学习DeepLearning第12章深度学习的主流应用内容概要本周深入探讨了深度学习在多个领域的应用,包括计算机视觉、语音识别、自然语言处理以及其他领域如推荐系统和知识表示。本章强调了硬件和软件基础设施的重要性,特别是GPU在加速神经网络训练中的关键作用。此外,还讨论了模型压缩、动态结构以及专用硬件实现等策略,以提高模型的效率和性能。通过具体的应用案例,展示了深度学习如何在实际问题中发挥作用。
- 语音识别项目实战:从零到一
一碗黄焖鸡三碗米饭
人工智能前沿与实践语音识别人工智能tensorflow机器学习python深度学习
语音识别项目实战:从零到一语音识别技术近年来在各个领域得到了广泛的应用,例如语音助手、智能家居控制、语音输入法等。随着深度学习的快速发展,语音识别的准确性和实用性得到了极大的提升。本文将围绕语音识别项目实战展开,详细讲解从零到一构建一个语音识别系统的完整流程。我们将以DeepSpeech作为实现基础,使用Python和TensorFlow等流行的工具,结合实际代码案例,帮助大家深入理解如何从头开始
- 人脸识别项目实战:从零到一
一碗黄焖鸡三碗米饭
人工智能前沿与实践tensorflow机器学习人工智能python深度学习人脸识别
目录人脸识别项目实战:从零到一1.人脸识别技术概述2.人脸识别项目的开发流程2.1准备环境2.2数据采集与预处理2.3特征提取与模型训练2.3.1使用预训练模型进行人脸特征提取2.3.2构建识别系统2.4人脸识别系统的优化2.4.1使用深度学习优化模型2.4.2数据增强2.5部署与应用2.5.1使用Flask部署人脸识别模型2.6系统测试与性能优化3.总结与展望人脸识别作为计算机视觉中的重要应用之
- 深度学习框架比较:PyTorch vs TensorFlow
AI天才研究院
ChatGPTAI大模型企业级应用开发实战DeepSeekR1&大数据AI人工智能大模型大厂Offer收割机面试题简历程序员读书硅基计算碳基计算认知计算生物计算深度学习神经网络大数据AIGCAGILLMJavaPython架构设计Agent程序员实现财富自由
《深度学习框架比较:PyTorchvsTensorFlow》关键词深度学习,PyTorch,TensorFlow,框架比较,开发体验,性能,生态系统摘要本文将深入比较深度学习框架PyTorch和TensorFlow,从框架概述、基础API、开发体验、性能、生态系统等多个角度进行全面分析。通过详细的项目实战案例,读者将更直观地理解这两种框架的差异和适用场景。文章旨在为深度学习开发者提供选型指南,助力
- 深度学习篇---paddleocr进阶
Ronin-Lotus
程序代码篇图像处理篇深度学习篇深度学习人工智能pythonpaddlepaddlepaddleocr
文章目录前言一、图像预处理优化1.1作用1.2示例代码1.2.1灰度化1.2.2对比度增强(CLAHE)1.2.3二值化1.4解释1.4.1灰度化1.4.2CLAHE1.4.3二值化二、调整模型参数2.1作用2.2示例代码2.3参数说明rec_image_shapedet_db_unclip_ratio三、使用最新模型3.1作用3.1示例代码四、后处理优化4.1作用4.2示例代码4.2.1使用Pa
- TensorFlow 深度学习框架详解
奶油话梅糖
深度学习tensorflow人工智能
TensorFlow深度学习框架详解1.框架概述TensorFlow是由GoogleBrain团队开发的开源机器学习框架,其名称源于处理多维数据数组(张量)的数据流图(Flow)的运行方式。核心特点:跨平台支持:可在CPU/GPU/TPU上运行多语言接口:原生支持Python,通过API支持JS/Java/C++生态丰富:集成Keras、TF-Lite、TFX等工具链2.核心概念解析2.1张量(T
- 如何基于ios部署Deep Seek?
恶霸不委屈
iospythonswift
在iOS上部署深度学习模型(如DeepSeek或其他自定义模型)通常需要将模型转换为iOS支持的格式(如CoreML),并通过代码集成到应用中。以下是详细步骤:1.准备模型模型训练确保你的模型已训练完成(如PyTorch、TensorFlow/Keras格式)。转换为CoreML格式使用coremltools将模型转换为.mlmodel格式:importcoremltoolsasct#示例:转换P
- 吴恩达深度学习复盘(1)神经网络与深度学习的发展
wgc2k
#深度学习深度学习人工智能
一、神经网络的起源与生物学动机灵感来源神经网络的最初动机源于对生物大脑的模仿。20世纪50年代,科学家试图通过软件模拟神经元的工作机制(如树突接收信号、轴突传递信号),构建类似人类大脑的信息处理系统。生物神经元的简化模型人工神经网络采用数学模型简化生物神经元的行为:每个神经元接收输入(数字信号),通过加权求和与激活函数处理后输出。尽管这一模型远不及真实大脑复杂,但早期研究认为其可能复现智能行为。二
- 深度学习论文: Image Segmentation Using Text and Image Prompts
mingo_敏
PaperReadingSemanticSegmentation深度学习人工智能
深度学习论文:ImageSegmentationUsingTextandImagePromptsImageSegmentationUsingTextandImagePromptsPDF:https://arxiv.org/abs/2503.10622v1PyTorch代码:https://github.com/shanglianlm0525/CvPytorchPyTorch代码:https://g
- 开源深度学习框架PyTorch
深海水
人工智能行业发展IT应用探讨深度学习开源pytorch人工智能python机器训练
一、PyTorch介绍PyTorch是一个开源的深度学习框架,由Facebook的人工智能研究团队(FAIR)开发。它以动态图计算(DynamicComputationGraph)为核心,提供灵活的深度学习建模能力,广泛评估计算机视觉、自然语言处理、强化学习等领域。PyTorch的主要特点1.动态图计算(动态计算图)计算图在运行时构建,支持动态调整,适用于复杂任务。2.强大的GPU加速使用CUDA
- 第P8周:YOLOv5-C3模块实现
小羊的 utopia
pytorchpython
本文为365天深度学习训练营中的学习记录博客原作者:K同学啊我的环境:语言环境:python3.12.6编译器:jupyterlab深度学习环境:Pytorch前期准备importtorchimporttorch.nnasnnimporttorchvision.transformsastransformsimporttorchvisionfromtorchvisionimporttransform
- TensorFlow\Keras实战100例——结合CNN和RNN神经网络~CIFAR-10图像分类识别
AI街潜水的八角
tensorflowkeras神经网络
一.原理说明现在热火朝天的多模态中,就会将图片和文本等融合到一起,CNN网络,从事图像处理的工程师一般特别熟悉,如果不了解,可以参见我的另外一篇博客:TensorFlow\Keras实战100例——三种方式实现BP神经网络~CIFAR-10图像分类识别-CSDN博客LSTM网络介绍如下:长短期记忆网络(LongShort-TermMemory,LSTM)是一种特殊类型的循环神经网络(RNN),由H
- AI驱动BIM设计革命:从三维建模到智能决策的跃迁
领码科技
人工智能BIM智能设计机器学习可持续建筑
摘要AI与BIM技术的深度融合,正推动建筑设计从传统经验驱动向数据智能驱动转型。通过机器学习、深度学习与专家系统的赋能,BIM在设计阶段的方案生成、布局优化、合规审查等环节展现出显著优势,效率提升达30%-50%。本文从技术融合、应用场景、典型案例及发展瓶颈四维度展开,结合流程图与表格化分析,揭示AI+BIM在建筑全生命周期中的革新潜力,并为行业实践提供可操作性指南。关键词:AI、BIM、智能设计
- 阿里云国际站代理商:如何通过Serverless调用GPU资源?
聚搜云—服务器分享
阿里云serverless云计算
1.采用支持GPU资源的Serverless系统选择支持GPU资源的Serverless系统,如Dilu系统,它通过内省弹性(introspectiveelasticity)机制,提供细粒度和自适应的二维协同扩展机制,支持GPU资源按需分配。2.系统设计与架构控制平面:负责深度学习任务的分析、部署、调度和请求分发。用户提交带有预定义QoS描述的深度学习函数程序,系统通过分析获取资源计划,并由调度器
- ResNet18与VGG11模型对比分析
mosquito_lover1
深度学习人工智能python神经网络
ResNet18和VGG11是两种经典的卷积神经网络(CNN)架构,它们在设计理念、性能和应用场景上有显著差异。以下是它们的详细对比:1.网络结构与设计理念VGG11核心思想:通过堆叠多个**小卷积核(3×3)**构建深层网络,强调深度对性能的提升。结构特点:11层(8个卷积层+3个全连接层)。每层卷积使用固定3×3卷积核,通过堆叠小卷积模拟大感受野(如两个3×3卷积等效于一个5×5卷积)。池化层
- DeepSeek集成IT技术开发方向全景解读:重构智能开发新范式
量子纠缠BUG
DeepSeek部署DeepSeekAI重构人工智能机器学习
一、技术架构革命:支撑IT开发集成的三大引擎1.动态MoE架构(DeepSeekMoE-32B)通过混合专家系统实现精准任务路由,在软件开发场景中展现出显著优势:代码生成场景:激活Java/Python/C++等语言专家模块,单元测试覆盖率提升至85%硬件资源优化:FP16量化下推理显存需求低至12GB,支持边缘设备部署2.多模态融合引擎突破传统NLP模型局限,实现代码-文档-时序数据的联合理解:
- Manus AI - 面向多模态生成的人工智能平台
热爱分享的博士僧
人工智能
ManusAI作为一个面向多模态生成的人工智能平台,意味着它不仅仅专注于单一类型的数据处理(如文本),而是能够整合和处理来自多种不同模式的数据,比如文本、图像、音频甚至是触觉信息。这种能力使得ManmusAI能够在更广泛的场景中应用,下面是一些可能的方向和技术特点:1.多模态数据融合跨模态学习:利用深度学习技术将不同类型的数据(例如文字描述与对应的图片)结合起来进行训练,以提取更加丰富的特征表示。
- 卷积神经网络 - 微步卷积、空洞卷积
谦亨有终
AI学习笔记cnn人工智能神经网络机器学习
一、微步卷积微步卷积(FractionallyStridedConvolution),通常也称为转置卷积(TransposedConvolution)或反卷积(Deconvolution),是深度学习(尤其是卷积神经网络,CNN)中用于上采样(Upsampling)或特征图尺寸恢复的关键操作。它的核心目的是通过卷积操作将较小的特征图(低分辨率)扩展为更大的特征图(高分辨率)。1.微步卷积的核心思想
- 【人工智能】卷积神经网络(Convolutional Neural Network)
AI天才研究院
DeepSeekR1&大数据AI人工智能大模型人工智能cnn深度学习
文章目录卷积神经网络(ConvolutionalNeuralNetwork)卷积神经网络|CNN,ConvolutionalNeuralNetworks.1.卷积操作(ConvolutionOperation):2.池化操作(PoolingOperation):3.激活函数(ActivationFunction):4.全连接层(FullyConnectedLayer):卷积神经网络1.卷积神经网络
- 神经网络 - 前馈神经网络(FNN)、全连接神经网络(FCNN)和卷积神经网络(CNN)的区别与联系
谦亨有终
AI学习笔记神经网络cnn人工智能深度学习机器学习
在前面的博文中,我们依次学习了前馈神经网络(FNN)、全连接神经网络(FCNN)和卷积神经网络(CNN),为了避免混淆,本文我们来总结一下这三种神经网络的区别和联系。全连接神经网络(FCNN)和卷积神经网络(CNN)都属于前馈神经网络(FNN)的范畴,因为它们的核心特点是数据单向传播,没有循环或反馈连接。(请注意理解这句话,对于我们学习神经网络非常重要!)1.前馈神经网络(FNN)的定义前馈神经网
- 【深度学习新浪潮】图像修复(Image Inpainting)技术综述:定义、进展与应用展望
AndrewHZ
深度学习新浪潮图像处理算法计算机视觉深度学习人工智能图像修复LLM
本文为精简版,完整技术细节与参考文献可与作者讨论。1.图像修复的定义与核心目标图像修复(ImageInpainting)是一种通过算法手段填补图像中缺失区域或移除不需要对象的技术,其核心目标是利用图像上下文信息生成与周围像素一致且视觉自然的内容。该技术通过计算机视觉和深度学习模型,从损坏、遮挡或人为标记的区域中推断出合理的像素填充,最终实现图像的无痕修复。从数学视角看,图像修复可建模为一个逆向优化
- 人工智能与网络安全结合的思考
黑客Jack
人工智能web安全安全
一、人工智能时代的网络安全网络攻击越来越多样化、智能化、隐蔽性越来越高、危害性越来越大二、人工智能与网络安全结合的可能性1.信息检索:面对大量日志数据处理,AI的算力能够提前发现潜在威胁,进行漏洞自动挖掘;NLP技术能够帮助用户自动提取威胁情报。2.安全性分析:分析网络攻防策略、密码/协议/系统安全性分析等;AI可以分析大量网络数据,识别异常行为和潜在的威胁,以及实时响应攻击。这种能力使得AI能够
- AI问答:transformer 架构 / 模型 / 自注意力机制实现序列数据的并行处理 / AI的底层
快雪时晴-初晴融雪
前端transformer深度学习人工智能
Transformer架构是一种基于自注意力机制的深度学习模型,最初由谷歌团队在2017年提出,用于解决自然语言处理中的序列转导问题,尤其是机器翻译任务。该架构摒弃了传统循环神经网络(RNN)和卷积神经网络(CNN)中的递归和卷积操作,通过自注意力机制实现了对序列数据的并行处理,显著提高了模型的训练速度和性能。一、Transformer架构的组成Transformer架构主要由以下几个部分组成1.
- java线程Thread和Runnable区别和联系
zx_code
javajvmthread多线程Runnable
我们都晓得java实现线程2种方式,一个是继承Thread,另一个是实现Runnable。
模拟窗口买票,第一例子继承thread,代码如下
package thread;
public class ThreadTest {
public static void main(String[] args) {
Thread1 t1 = new Thread1(
- 【转】JSON与XML的区别比较
丁_新
jsonxml
1.定义介绍
(1).XML定义
扩展标记语言 (Extensible Markup Language, XML) ,用于标记电子文件使其具有结构性的标记语言,可以用来标记数据、定义数据类型,是一种允许用户对自己的标记语言进行定义的源语言。 XML使用DTD(document type definition)文档类型定义来组织数据;格式统一,跨平台和语言,早已成为业界公认的标准。
XML是标
- c++ 实现五种基础的排序算法
CrazyMizzz
C++c算法
#include<iostream>
using namespace std;
//辅助函数,交换两数之值
template<class T>
void mySwap(T &x, T &y){
T temp = x;
x = y;
y = temp;
}
const int size = 10;
//一、用直接插入排
- 我的软件
麦田的设计者
我的软件音乐类娱乐放松
这是我写的一款app软件,耗时三个月,是一个根据央视节目开门大吉改变的,提供音调,猜歌曲名。1、手机拥有者在android手机市场下载本APP,同意权限,安装到手机上。2、游客初次进入时会有引导页面提醒用户注册。(同时软件自动播放背景音乐)。3、用户登录到主页后,会有五个模块。a、点击不胫而走,用户得到开门大吉首页部分新闻,点击进入有新闻详情。b、
- linux awk命令详解
被触发
linux awk
awk是行处理器: 相比较屏幕处理的优点,在处理庞大文件时不会出现内存溢出或是处理缓慢的问题,通常用来格式化文本信息
awk处理过程: 依次对每一行进行处理,然后输出
awk命令形式:
awk [-F|-f|-v] ‘BEGIN{} //{command1; command2} END{}’ file
[-F|-f|-v]大参数,-F指定分隔符,-f调用脚本,-v定义变量 var=val
- 各种语言比较
_wy_
编程语言
Java Ruby PHP 擅长领域
- oracle 中数据类型为clob的编辑
知了ing
oracle clob
public void updateKpiStatus(String kpiStatus,String taskId){
Connection dbc=null;
Statement stmt=null;
PreparedStatement ps=null;
try {
dbc = new DBConn().getNewConnection();
//stmt = db
- 分布式服务框架 Zookeeper -- 管理分布式环境中的数据
矮蛋蛋
zookeeper
原文地址:
http://www.ibm.com/developerworks/cn/opensource/os-cn-zookeeper/
安装和配置详解
本文介绍的 Zookeeper 是以 3.2.2 这个稳定版本为基础,最新的版本可以通过官网 http://hadoop.apache.org/zookeeper/来获取,Zookeeper 的安装非常简单,下面将从单机模式和集群模式两
- tomcat数据源
alafqq
tomcat
数据库
JNDI(Java Naming and Directory Interface,Java命名和目录接口)是一组在Java应用中访问命名和目录服务的API。
没有使用JNDI时我用要这样连接数据库:
03. Class.forName("com.mysql.jdbc.Driver");
04. conn
- 遍历的方法
百合不是茶
遍历
遍历
在java的泛
- linux查看硬件信息的命令
bijian1013
linux
linux查看硬件信息的命令
一.查看CPU:
cat /proc/cpuinfo
二.查看内存:
free
三.查看硬盘:
df
linux下查看硬件信息
1、lspci 列出所有PCI 设备;
lspci - list all PCI devices:列出机器中的PCI设备(声卡、显卡、Modem、网卡、USB、主板集成设备也能
- java常见的ClassNotFoundException
bijian1013
java
1.java.lang.ClassNotFoundException: org.apache.commons.logging.LogFactory 添加包common-logging.jar2.java.lang.ClassNotFoundException: javax.transaction.Synchronization
- 【Gson五】日期对象的序列化和反序列化
bit1129
反序列化
对日期类型的数据进行序列化和反序列化时,需要考虑如下问题:
1. 序列化时,Date对象序列化的字符串日期格式如何
2. 反序列化时,把日期字符串序列化为Date对象,也需要考虑日期格式问题
3. Date A -> str -> Date B,A和B对象是否equals
默认序列化和反序列化
import com
- 【Spark八十六】Spark Streaming之DStream vs. InputDStream
bit1129
Stream
1. DStream的类说明文档:
/**
* A Discretized Stream (DStream), the basic abstraction in Spark Streaming, is a continuous
* sequence of RDDs (of the same type) representing a continuous st
- 通过nginx获取header信息
ronin47
nginx header
1. 提取整个的Cookies内容到一个变量,然后可以在需要时引用,比如记录到日志里面,
if ( $http_cookie ~* "(.*)$") {
set $all_cookie $1;
}
变量$all_cookie就获得了cookie的值,可以用于运算了
- java-65.输入数字n,按顺序输出从1最大的n位10进制数。比如输入3,则输出1、2、3一直到最大的3位数即999
bylijinnan
java
参考了网上的http://blog.csdn.net/peasking_dd/article/details/6342984
写了个java版的:
public class Print_1_To_NDigit {
/**
* Q65.输入数字n,按顺序输出从1最大的n位10进制数。比如输入3,则输出1、2、3一直到最大的3位数即999
* 1.使用字符串
- Netty源码学习-ReplayingDecoder
bylijinnan
javanetty
ReplayingDecoder是FrameDecoder的子类,不熟悉FrameDecoder的,可以先看看
http://bylijinnan.iteye.com/blog/1982618
API说,ReplayingDecoder简化了操作,比如:
FrameDecoder在decode时,需要判断数据是否接收完全:
public class IntegerH
- js特殊字符过滤
cngolon
js特殊字符js特殊字符过滤
1.js中用正则表达式 过滤特殊字符, 校验所有输入域是否含有特殊符号function stripscript(s) { var pattern = new RegExp("[`~!@#$^&*()=|{}':;',\\[\\].<>/?~!@#¥……&*()——|{}【】‘;:”“'。,、?]"
- hibernate使用sql查询
ctrain
Hibernate
import java.util.Iterator;
import java.util.List;
import java.util.Map;
import org.hibernate.Hibernate;
import org.hibernate.SQLQuery;
import org.hibernate.Session;
import org.hibernate.Transa
- linux shell脚本中切换用户执行命令方法
daizj
linuxshell命令切换用户
经常在写shell脚本时,会碰到要以另外一个用户来执行相关命令,其方法简单记下:
1、执行单个命令:su - user -c "command"
如:下面命令是以test用户在/data目录下创建test123目录
[root@slave19 /data]# su - test -c "mkdir /data/test123"
- 好的代码里只要一个 return 语句
dcj3sjt126com
return
别再这样写了:public boolean foo() { if (true) { return true; } else { return false;
- Android动画效果学习
dcj3sjt126com
android
1、透明动画效果
方法一:代码实现
public View onCreateView(LayoutInflater inflater, ViewGroup container, Bundle savedInstanceState)
{
View rootView = inflater.inflate(R.layout.fragment_main, container, fals
- linux复习笔记之bash shell (4)管道命令
eksliang
linux管道命令汇总linux管道命令linux常用管道命令
转载请出自出处:
http://eksliang.iteye.com/blog/2105461
bash命令执行的完毕以后,通常这个命令都会有返回结果,怎么对这个返回的结果做一些操作呢?那就得用管道命令‘|’。
上面那段话,简单说了下管道命令的作用,那什么事管道命令呢?
答:非常的经典的一句话,记住了,何为管
- Android系统中自定义按键的短按、双击、长按事件
gqdy365
android
在项目中碰到这样的问题:
由于系统中的按键在底层做了重新定义或者新增了按键,此时需要在APP层对按键事件(keyevent)做分解处理,模拟Android系统做法,把keyevent分解成:
1、单击事件:就是普通key的单击;
2、双击事件:500ms内同一按键单击两次;
3、长按事件:同一按键长按超过1000ms(系统中长按事件为500ms);
4、组合按键:两个以上按键同时按住;
- asp.net获取站点根目录下子目录的名称
hvt
.netC#asp.nethovertreeWeb Forms
使用Visual Studio建立一个.aspx文件(Web Forms),例如hovertree.aspx,在页面上加入一个ListBox代码如下:
<asp:ListBox runat="server" ID="lbKeleyiFolder" />
那么在页面上显示根目录子文件夹的代码如下:
string[] m_sub
- Eclipse程序员要掌握的常用快捷键
justjavac
javaeclipse快捷键ide
判断一个人的编程水平,就看他用键盘多,还是鼠标多。用键盘一是为了输入代码(当然了,也包括注释),再有就是熟练使用快捷键。 曾有人在豆瓣评
《卓有成效的程序员》:“人有多大懒,才有多大闲”。之前我整理了一个
程序员图书列表,目的也就是通过读书,让程序员变懒。 写道 程序员作为特殊的群体,有的人可以这么懒,懒到事情都交给机器去做,而有的人又可
- c++编程随记
lx.asymmetric
C++笔记
为了字体更好看,改变了格式……
&&运算符:
#include<iostream>
using namespace std;
int main(){
int a=-1,b=4,k;
k=(++a<0)&&!(b--
- linux标准IO缓冲机制研究
音频数据
linux
一、什么是缓存I/O(Buffered I/O)缓存I/O又被称作标准I/O,大多数文件系统默认I/O操作都是缓存I/O。在Linux的缓存I/O机制中,操作系统会将I/O的数据缓存在文件系统的页缓存(page cache)中,也就是说,数据会先被拷贝到操作系统内核的缓冲区中,然后才会从操作系统内核的缓冲区拷贝到应用程序的地址空间。1.缓存I/O有以下优点:A.缓存I/O使用了操作系统内核缓冲区,
- 随想 生活
暗黑小菠萝
生活
其实账户之前就申请了,但是决定要自己更新一些东西看也是最近。从毕业到现在已经一年了。没有进步是假的,但是有多大的进步可能只有我自己知道。
毕业的时候班里12个女生,真正最后做到软件开发的只要两个包括我,PS:我不是说测试不好。当时因为考研完全放弃找工作,考研失败,我想这只是我的借口。那个时候才想到为什么大学的时候不能好好的学习技术,增强自己的实战能力,以至于后来找工作比较费劲。我
- 我认为POJO是一个错误的概念
windshome
javaPOJO编程J2EE设计
这篇内容其实没有经过太多的深思熟虑,只是个人一时的感觉。从个人风格上来讲,我倾向简单质朴的设计开发理念;从方法论上,我更加倾向自顶向下的设计;从做事情的目标上来看,我追求质量优先,更愿意使用较为保守和稳妥的理念和方法。
&