应论文需求,需要计算矩阵的逆矩阵。
相应的矩阵操作工具类如下:
package cn.edu.ujn.paper.matrix;
public class MatrixUtil {
/** * 实现矩阵相乘 (AB) * @param a 矩阵A * @param b 矩阵B */
private static double[][] matrixMulti(double[][] a,double[][] b){
double c[][] = new double[a.length][b[0].length];
int x,i,j;
for(i = 0;i<a.length ;i++)
{
for(j = 0;j<b[0].length;j++)
{
int temp = 0;
for(x = 0;x<b.length;x++)
{
temp+=a[i][x]*b[x][j];
}
c[i][j] = temp;
}
}
System.out.println("矩阵相乘后结果为:");
for(int m = 0; m < a.length; m++)
{
for(int n = 0; n < b[0].length; n++)
{
System.out.print(c[m][n]+"\t");
}
System.out.println();
}
MatrixUtil.getHL(c);
return c;
}
/** * 矩阵打印 * @param matrix 矩阵 * @param r 行 * @param c 列 */
public static void printMatrix(double[][] matrix, int r, int c){
System.out.println("打印矩阵:");
String Strr = new String("");
for (int i = 0; i < r; i++) {
for (int j = 0; j < c; j++) {
String str = String.valueOf(matrix[i][j]);
Strr += str;
Strr += "\t";
}
Strr += "\n";
}
System.out.println(Strr);
}
/** * 求解代数余子式 * @param data 原始矩阵 * @param h 待求解元素的行 * @param v 待求解元素的列 * @return */
public static double[][] getDY(double[][] data, int h, int v) {
int H = data.length;
int V = data[0].length;
double[][] newData = new double[H - 1][V - 1];
for (int i = 0; i < newData.length; i++) {
if (i < h - 1) {
for (int j = 0; j < newData[i].length; j++) {
if (j < v - 1) {
newData[i][j] = data[i][j];
} else {
newData[i][j] = data[i][j + 1];
}
}
} else {
for (int j = 0; j < newData[i].length; j++) {
if (j < v - 1) {
newData[i][j] = data[i + 1][j];
} else {
newData[i][j] = data[i + 1][j + 1];
}
}
}
}
// System.out.println("---------------------代数余子式测试---------------------------------");
/* for(int i = 0; i < newData.length; i++){ for(int j = 0; j < newData[i].length; j++){ System.out.print("newData[" + i + "]" + "[" + j + "]=" + newData[i][j] + " "); } System.out.println(); }*/
return newData;
}
/** * 求解行列式的模 * * @param data * @return float */
public static double getHL(double[][] data) {
// 终止条件
if (data.length == 2) {
return data[0][0] * data[1][1] - data[0][1] * data[1][0];
}
if (data.length == 1) {
return data[0][0];
}
double total = 0;
// 根据data 得到行列式的行数和列数
int num = data.length;
// 创建一个大小为num 的数组存放对应的展开行中元素求的的值
double[] nums = new double[num];
for (int i = 0; i < num; i++) {
if (i % 2 == 0) {
nums[i] = data[0][i] * getHL(getDY(data, 1, i + 1));
} else {
nums[i] = -data[0][i] * getHL(getDY(data, 1, i + 1));
}
}
for (int i = 0; i < num; i++) {
total += nums[i];
}
// System.out.println("total=" + total);
return total;
}
/** * 取得转置矩阵 * @param A * @return float[][] */
public static double[][] getA_T(double[][] A) {
int h = A.length;
int v = A[0].length;
// 创建和A行和列相反的转置矩阵
double[][] A_T = new double[v][h];
// 根据A取得转置矩阵A_T
for (int i = 0; i < h; i++) {
for (int j = 0; j < v; j++) {
A_T[j][i] = A[i][j];
}
}
// System.out.println("取得转置矩阵 wanbi........");
return A_T;
}
/** * 求解逆矩阵 * * @param data * @return */
public static double[][] getReverseMatrix(double[][] data) {
// 1.求出行列式的模|data|
double m = getHL(data);
// 若行列式的值为0,则表明逆矩阵不存在
if(Arith.compareTo(m, 0) == 0){
System.out.println("----------------行列式的模为0,逆矩阵不存在-----------------");
return null;
}
if(m == 0){
}
System.out.println("行列式:" + m);
// 创建一个等容量的逆矩阵
double[][] newData = new double[data.length][data.length];
for (int i = 0; i < data.length; i++) {
for (int j = 0; j < data.length; j++) {
double num;
if ((i + j) % 2 == 0) {
num = getHL(getDY(data, i + 1, j + 1));
} else {
num = -getHL(getDY(data, i + 1, j + 1));
}
newData[i][j] = num / m;
}
}
// 2.转置代数余子式
newData = getA_T(newData);
// 打印
System.out.println("逆矩阵:");
for (int i = 0; i < data.length; i++) {
for (int j = 0; j < data.length; j++) {
System.out.print("newData[" + i + "][" + j + "]= " + newData[i][j] + " ");
}
System.out.println();
}
return newData;
}
/** * 计算矩阵的秩 * @param Matrix 矩阵 * @param error_ * @param List * @return */
public static int Rank(double[][] Matrix, int error_, int List)
{
int n = List;
int m = Matrix.length ;
int i = 0;
int j = 0;
int i1, j1;
double temp1;
if(m > n)
{
i = m;
m = n;
n = i;
i = 1;
}
m -= 1;
n -= 1;
double[][]temp = new double[m+1][n+1];
if(i == 0)
{
for(i = 0; i <= m; i++)
{
for(j = 0; j <= n; j++)
{
temp[i][j] = Matrix[i][j];
}
}
} else
{
for(i = 0; i <= m; i++)
{
for(j = 0; j <= n; j++)
{
temp[i][j] = Matrix[j][i];
}
}
}
if(m == 0)
{
i = 0;
while(i <= n)
{
if(Matrix[0][i] != 0)
{
return 1;
}
i += 1;
}
return 0;
}
double error0;
if(error_ == -1)
{
error0 = Math.pow(0.1, 10);
}
else
{
error0 = Math.pow(0.1, error_);
}
i = 0;
while(i <= m)
{
j = 0;
while(j <= n)
{
if(temp[i][j] != 0)
{
error0 *= temp[i][j];
i = m;
break;
}
j += 1;
}
i += 1;
}
double error1;
for(i = 0; i <= m; i++)
{
j = 0;
while(j <= n)
{
if(temp[i][j] != 0)
{
break;
}
j += 1;
}
if(j <= n)
{
i1 = 0;
while(i1 <= m)
{
if(temp[i1][j] != 0 && i1 != i)
{
temp1 = temp[i][j]/temp[i1][j];
error1 = Math.abs((temp[i][j] - temp[i1][j]*temp1))*100;
error1 += error0;
for(j1 = 0; j1 <= n; j1++)
{
temp[i1][j1] = temp[i][j1] - temp[i1][j1]*temp1;
if(Math.abs(temp[i1][j1]) < error1)
{
temp[i1][j1] = 0;
}
}
}
i1 += 1;
}
}
}
i1 = 0;
for(i = 0; i <= m; i++)
{
for(j = 0; j <= n; j++)
{
if(temp[i][j] != 0)
{
i1 += 1;
break;
}
}
}
return i1;
}
}