大数据系列教程_分布式消息队列kafka

分布式消息队列kafka

 

1、启动kafka,每个server节点需要

./kafka-server-start.sh /home/node6/kafka2800811/config/server.properties &

1、  创建主题:

./kafka-topics.sh --create  --topic mytopic --replication-factor  3  --partitions 1  --zookeeper zookeeper1:2181,zookeeper2:2181,zookeeper3:2181

2、  生产者代码

package com.yth.test;

 

import java.util.Properties;

 

import kafka.javaapi.producer.Producer;

import kafka.producer.KeyedMessage;

import kafka.producer.ProducerConfig;

/**

 *

 * @author ASh

 * @date 2014年9月10日下午10:47:01

 */

public class Producers {

 

public static void main(String[] args) {

          

          

           Properties props = new Properties();

        props.put("metadata.broker.list","node6:9092,node7:9093,node8:9094");

        props.put("serializer.class", "kafka.serializer.StringEncoder");

        // key.serializer.class默认为serializer.class

        props.put("key.serializer.class", "kafka.serializer.StringEncoder");

        // 可选配置,如果不配置,则使用默认的partitioner

    

        // 触发acknowledgement机制,否则是fire and forget,可能会引起数据丢失

        // 值为0,1,-1,可以参考

        // http://kafka.apache.org/08/configuration.html

        props.put("request.required.acks", "1");

           ProducerConfig config =  new  ProducerConfig(props); 

           Producer<String, String> producer =  new  Producer<String, String>(config);  

            

           // The message is sent to a randomly selected partition registered in ZK  

           KeyedMessage<String, String> km=new KeyedMessage<String, String>("mytopic", "11111111");

           producer.send(km);     

            

           producer.close();

}

}

 

3、  消费者代码

 

package com.yth.test;

import java.util.HashMap;

import java.util.List;

import java.util.Map;

import java.util.Properties;

import java.util.concurrent.ExecutorService;

import java.util.concurrent.Executors;

 

import kafka.consumer.Consumer;

import kafka.consumer.ConsumerConfig;

import kafka.consumer.KafkaStream;

import kafka.javaapi.consumer.ConsumerConnector;

 

public class ConsumerDemo {

    private final ConsumerConnector consumer;

    private final String topic;

    private ExecutorService executor;

 

    public ConsumerDemo(String a_zookeeper, String a_groupId, String a_topic) {

        consumer = Consumer.createJavaConsumerConnector(createConsumerConfig(a_zookeeper,a_groupId));

        this.topic = a_topic;

    }

 

    public void shutdown() {

        if (consumer != null)

            consumer.shutdown();

        if (executor != null)

            executor.shutdown();

    }

 

    public void run(int numThreads) {

        Map<String, Integer> topicCountMap = new HashMap<String, Integer>();

        topicCountMap.put(topic, new Integer(numThreads));

        Map<String, List<KafkaStream<byte[], byte[]>>> consumerMap = consumer

                .createMessageStreams(topicCountMap);

        List<KafkaStream<byte[], byte[]>> streams = consumerMap.get(topic);

 

        // now launch all the threads

        executor = Executors.newFixedThreadPool(numThreads);

 

        // now create an object to consume the messages

        //

        int threadNumber = 0;

        for (final KafkaStream stream : streams) {

            executor.submit(new ConsumerMsgTask(stream, threadNumber));

            threadNumber++;

        }

    }

 

    private static ConsumerConfig createConsumerConfig(String a_zookeeper,

            String a_groupId) {

        Properties props = new Properties();

        props.put("zookeeper.connect", a_zookeeper);

        props.put("group.id", a_groupId);

        props.put("zookeeper.session.timeout.ms", "400");

        props.put("zookeeper.sync.time.ms", "200");

        props.put("auto.commit.interval.ms", "1000");

 

        return new ConsumerConfig(props);

    }

 

    public static void main(String[] arg) {

        String[] args = { "zookeeper1:2181,zookeeper2:2181,zookeeper3:2181", "group-1", "mytopic", "12" };

        String zooKeeper = args[0];

        String groupId = args[1];

        String topic = args[2];

        int threads = Integer.parseInt(args[3]);

 

        ConsumerDemo demo = new ConsumerDemo(zooKeeper, groupId, topic);

        demo.run(threads);

 

        try {

            Thread.sleep(10000);

        } catch (InterruptedException ie) {

 

        }

        demo.shutdown();

    }

}

//////////////////////////////////////////////////////////////////////////////////////////////////////

package com.yth.test;

 

import kafka.consumer.ConsumerIterator;

import kafka.consumer.KafkaStream;

 

public class ConsumerMsgTask implements Runnable {

    private KafkaStream m_stream;

    private int m_threadNumber;

 

    public ConsumerMsgTask(KafkaStream stream, int threadNumber) {

        m_threadNumber = threadNumber;

        m_stream = stream;

    }

 

    public void run() {

        ConsumerIterator<byte[], byte[]> it = m_stream.iterator();

        while (it.hasNext())

            System.out.println("Thread " + m_threadNumber + ": "

                    + new String(it.next().message()));

        System.out.println("Shutting down Thread: " + m_threadNumber);

    }

}


 

你可能感兴趣的:(zookeeper,大数据,kafka,大数据系列教程)