图的最短路径问题-07-图6 旅游规划

  • 题目
    07-图6 旅游规划 (25分)
  • 分析
    这道题明显是个单源无向图的最短路径问题,但是这儿注意的是有两个权重:一是距离,二是收费。可以用Dijkstra算法来求解。当距离相等时按照收费来更新最短路。
    伪码描述:
//dist[i]表示结点i到源点S的距离
//cost[i]表示结点i到源点S的收费
void Dijkstra(源点S)
{
    while(1){
        V = 未被收录的结点中dist最小者;
        if(这样的V不存在)   break;
        collected[V] = true;
        for(V的每个邻接点W){
            if(!collected[W]){
                if(dist[V]+graph[V][W] < dist[W]){
                    dist[W] = dist[V] + graph[V][W];
                    cost[W] = cost[V] + money[V][W];
                }else if(dist[V]+graph[V][W] == dist[W] && cost[W] > cost[V] + money[V][W]){
                    cost[W] = cost[V] + money[V][W];
                }
            }
        }
    }
}
  • 代码
#include<iostream>
using namespace std;
const int INF = 123456;
const int MAXN = 500;

int N, M, S, D;
int dist[MAXN];     //dist[i]表示i到S的距离
int cost[MAXN]; //cost[i]表示i到S的费用
bool visited[MAXN] = {false};

int graph[MAXN][MAXN];
int money[MAXN][MAXN];

void Dijkstra(int s)
{
    int i,short1,v0;
    visited[s] = true;

    while(1)
    {
        short1  = INF;
        v0 = -1;
        for(i=0; i<N; i++){
            if(!visited[i]){
                if(dist[i] < short1){
                    v0 = i;
                    short1 = dist[i];
                }
            }
        }

        if(v0 <0)   break;

        visited[v0] = true;
        for(i=0; i<N; i++){
            if(!visited[i]){
                if(graph[i][v0]+dist[v0]<dist[i]){
                    dist[i] = dist[v0] + graph[i][v0];
                    cost[i] = cost[v0] + money[i][v0];
                }else if(dist[v0]+graph[i][v0] == dist[i] && cost[v0] + money[i][v0]<cost[i]){
                    cost[i] = cost[v0] + money[i][v0];
                }
            }
        }
    } 

} 

int main()
{
    #ifndef ONLINE_JUDGE
    freopen("journey.txt", "r", stdin);
    #endif

    scanf("%d%d%d%d", &N, &M, &S, &D);
    int i, j;
    //构造图 
    for(i=0; i<N; i++){
        for(j=0; j<N; j++){
            if(i == j){
                graph[i][j] = 0;
                money[i][j] = 0;
            }else{
                graph[i][j] = INF;
                money[i][j] = INF;
            }

        }
    }
    //printf("aaa\n");
    int x, y, length, money1;
    for(i=0; i<M; i++){
        scanf("%d%d%d%d", &x, &y, &length, &money1);
        graph[x][y] = graph[y][x] = length;
        money[x][y] = money[y][x] = money1; 
    }

    //初始化dist和cost
    for(i=0; i<N; i++){
        dist[i] = graph[S][i];
        cost[i] = money[S][i];
    } 
    Dijkstra(S);

    printf("%d %d\n", dist[D], cost[D]);
    return 0;
}

你可能感兴趣的:(图,dijkstra)