- 【数据结构】最短路径问题(BFS/DFS算法,Dijkstra算法,Floyd算法,Bellman-Ford算法)
samarua
#数据结构数据结构算法
BFS算法——严格层序的BFS核心思路原生广度优先遍历的特点本来就是由源点向外发散,我们通过对队列大小的暂存,可以实现严格的按层遍历,层数即路径长度。适用场景因为本算法将层数看作路径长度,所以这要求图的所有边要么无权、要么权值相等。单源的;可以求到某一个点的最短路径,也可以求到所有点的最短路径。代码实现privatevoidDFS(boolean[][]graph,intsource){intle
- 算法方法快速回顾
托塔1
Unity知识快速回顾算法
(待修改)目录1.双指针2.滑动窗口理论基础3.二分查找3.二分查找理论基础4.KMP5.回溯算法6.贪心算法7.动态规划7.1.01背包7.2.完全背包7.3.多重背包8.单调栈9.并查集10.图论10.1.广度优先搜索(BFS)10.2.深度优先搜索(DFS)10.3.Dijkstra算法10.4.Floyd-Warshall算法11.哈希算法12.排序算法12.1.冒泡排序12.2.选择排序
- 代码随想录第六十二天| Floyd 算法精讲 A * 算法精讲 (A star算法) 最短路算法总结篇
kill bert
代码随想录算法训练营算法
Floyd算法精讲题目描述小明希望在公园散步时找到从一个景点到另一个景点的最短路径。给定公园的景点图,包含N个景点和M条双向道路,每条道路有已知的长度。小明有Q个观景计划,每个计划包含一个起点和终点,求每个计划的最短路径长度。输入包含景点数量N、道路数量M,接着M行每行三个整数u、v、w表示景点u和v之间的双向道路长度为w。然后输入观景计划数量Q,接着Q行每行两个整数start和end。输出每个计
- 图论 24. Floyd算法(多源最短路问题)
Mophead_Zarathustra
小白的代码随想录刷题笔记Mophead的小白刷题笔记leetcodepython代码随想录图论
图论24.Floyd算法(多源最短路问题)97.小明逛公园代码随想录卡码网无难度标识相对于前面的单源最短路解法,这道题扩展到了多源最短路问题。代码随想录:理解了遍历顺序才是floyd算法最精髓的地方。floyd算法的时间复杂度相对较高,适合稠密图且源点较多的情况。如果是稀疏图,floyd是从节点的角度去计算了,例如图中节点数量是1000,就一条边,那floyd的时间复杂度依然是O(n^3)。如果源
- 图论--最短路算法
Dream_Maker_yangkai
c++图论算法知识点总结和梳理图论
图论–最短路算法–yangkai在解决最短路问题时,优秀的最短路算法是必不可少的工具在这里介绍几种实用的算法1Floyd2Dijkstra算法3Dijkstra+堆优化4Bellman-Ford5SPFA(ShortestPathFasterAlgorithm)0图的储存方式边目录(记下来,仅此而已)邻接矩阵(适合稠密图)邻接表(适合稀疏图)链式前向星(万能):从每一个点把与之相连的边拉成一条链用
- 图论--最短路问题总结
微臣愚钝
算法(我一生之敌)图论算法
往期文章:算法-图-dijkstra最短路径-CSDN博客Bellman_ford算法--带负权值的单源最短路问题,边列表存储-CSDN博客bellman_ford之判断负权回路-CSDN博客bellman_ford之单源有限最短路-CSDN博客Floyd算法--多源最短路-CSDN博客至此已经讲解了三大最短路算法,分别是Dijkstra、Bellman_ford和Floyd。如果遇到单源且边为正
- (建议收藏)一文多图,彻底搞懂Floyd算法(多源最短路径)
程序员bigsai
数据结构与算法算法动态规划
前言在图论中,在寻路最短路径中除了Dijkstra算法以外,还有Floyd算法也是非常经典,然而两种算法还是有区别的,Floyd主要计算多源最短路径。在单源正权值最短路径,我们会用Dijkstra算法来求最短路径,并且算法的思想很简单—贪心算法:每次确定最短路径的一个点然后维护(更新)这个点周围点的距离加入预选队列,等待下一次的抛出确定。虽然思想很简单,实现起来是非常复杂的,我们需要邻接矩阵(表)
- 最短路径算法(Dijkstra算法、Floyd-Warshall算法)
佛渡红尘
计算机应用与算法算法数据结构
最短路径算法是解决图论中节点之间最短路径问题的经典算法。以下是两种常见的最短路径算法:Dijkstra算法和Floyd-Warshall算法。Dijkstra算法Dijkstra算法用于解决单源最短路径问题,即给定一个起点,找到起点到其他所有节点的最短路径。基本思想:初始化距离数组dist[],将起点到自己的距离设为0,到其余各点的距离设为无穷大(表示不可达)。创建一个集合S,用于存放已找到最短路
- 图论算法之最短路径(Dijkstra、Floyd、Bellman-ford和SPFA)
HX_2022
数据结构与算法数据结构算法图论
图论算法之最短路径(Dijkstra、Floyd、Bellman-ford和SPFA)1、图论最短路径概述图论算法为了求解一个顶点到另一个顶点的最短路径,即如果从图中某一顶点(称为源点)到达另一顶点(称为终点)的路径可能不止一条,如何找到一条路径,使得沿此路径各边上的权值总和(即从源点到终点的距离)达到最小,这条路径称为最短路径(shortestpath)。最短路径有很多特殊的情况,包括有向图还是
- 代码随想录算法训练营第六十六天| 图论11
Rachela_z
算法图论
Floyd算法精讲Floyd算法代码很简单,但真正理解起原理还是需要花点功夫,大家在看代码的时候,会发现Floyd的代码很简单,甚至看一眼就背下来了,但我为了讲清楚原理,本篇还是花了大篇幅来讲解。代码随想录if__name__=='__main__':max_int=10005#设置最大路径,因为边最大距离为10^4n,m=map(int,input().split())grid=[[[max_i
- 最短路算法
Emplace
算法图论最短路
算法介绍最短路是一种在一个有权图中求任意两点间的最短路径。算法描述最短路有很多的形式:单源最短路:就是固定起点的最短路。多源最短路:就是不固定起点的最短路。其中Floyd就是求多源最短路的。Floyd算法流程首先我们可以先枚举中间节点kkk,然后再枚举经过这个中间节点的起点和终点。最后对于每对起点和终点我们假设它们为(i,j),那么从i到j的距离就应该是a(i,k)+a(k,j)与a(i,j)的最
- 【初探数据结构】带环链表:原理、判断与数学证明
我想吃余
数据结构篇数据结构链表
欢迎讨论:在阅读过程中有任何疑问,欢迎在评论区留言,我们一起交流学习!点赞、收藏与分享:如果你觉得这篇文章对你有帮助,记得点赞、收藏,并分享给更多对数据结构感兴趣的朋友文章目录一、何为带环链表1.1带环链表的定义1.2典型示例二、环路检测:Floyd判圈算法2.1快慢指针实现2.2算法特性三、数学证明与深度解析3.1步长差为1的必然性证明(快2步/慢1步)3.2广义步长分析(快n步/慢1步)四、环
- leetcode142----环形链表
做程序员的第一天
软件开发工作基础知识链表数据结构算法C++
目录一、题目介绍二、解题思路2.1判断链表中是否有环2.1.1快慢指针法(Floyd判圈算法)2.2如何找到环的入口三、代码四、总结一、题目介绍题目链接:142.环形链表II-力扣(LeetCode)给定一个链表的头节点head,返回链表开始入环的第一个节点。如果链表无环,则返回null。如果链表中有某个节点,可以通过连续跟踪next指针再次到达,则链表中存在环。为了表示给定链表中的环,评测系统内
- 最短路算法(1)——floyd算法
_gxd_
算法算法数据结构
本章将介绍原理及floyd的算法实现。最短路特点最短路的意思是给出若干条边,求两个点之间的最短路径。要注意的是顺序也很重要,i到j的最短路径不一定等于j到i的最短路径。最短路在不同的题目下要使用不同的算法,有的算法能处理负权边(或负环),有的不能。当然,每个算法的时间复杂度也不一样。floyd特点1.floyd可以求出任意两点之间的最短路。2.可以处理任何情况(如负边,负环)。3.时间复杂度为O(
- P8794 [蓝桥杯 2022 国 A] 环境治理
小星星子
算法c++数据结构图论
P8794[蓝桥杯2022国A]环境治理-洛谷|计算机科学教育新生态(luogu.com.cn)#includeusingnamespacestd;#definelllonglongconstintN=150;constintinf=0x7fffffff;intn,q;intd[N][N],l[N][N];intt[N][N];voidfloyd(){for(intk=0;k=i+1)//如果治理
- 图论 之 弗洛伊德算法求解全源最短路径
JNU freshman
算法蓝桥杯图论算法
文章目录题目1334.阈值距离内邻居最少的城市Floyd算法适合用于求解多源的最短路径的问题,相比之下,Dijkstra算法适合用于求解单源的最短路径的问题,并且,当边的权值只有1的时候,我们还能使用BFS求解最短路径的问题图论之BFS图论之迪斯科特拉算法求解最短路径灵神讲解Floyd算法可以从递归中得到,相对应的,我们也有使用记忆化搜索和动态规划进行求解递归方式的模版@cachedefdfs(k
- 蓝桥杯 Java B 组之双指针技巧(快慢指针、滑动窗口)
计算机小白一个
蓝桥杯java数据结构
Day5:双指针技巧(快慢指针、滑动窗口)双指针技巧是处理许多算法问题时常用的技巧,尤其在数组或字符串中。双指针可以帮助我们在遍历过程中减少不必要的运算,从而优化时间复杂度。一、双指针概述双指针技巧主要分为两种常见方式:快慢指针(Floyd'sTortoiseandHare):适用于一些涉及到链表、循环、排序等问题。常见于快慢指针查找问题,如链表环问题、判断回文字符串等。滑动窗口:适用于数组或字符
- 【深度解析】最短路径算法:Dijkstra与Floyd-Warshall
吴师兄大模型
算法数据结构python最短路径算法Dijkstra算法Floyd-Warshall开发语言
系列文章目录01-从零开始掌握Python数据结构:提升代码效率的必备技能!02-算法复杂度全解析:时间与空间复杂度优化秘籍03-线性数据结构解密:数组的定义、操作与实际应用04-深入浅出链表:Python实现与应用全面解析05-栈数据结构详解:Python实现与经典应用场景06-深入理解队列数据结构:从定义到Python实现与应用场景07-双端队列(Deque)详解:Python实现与滑动窗口应
- c/c++蓝桥杯经典编程题100道(22)最短路径问题
tamak
算法数据结构图论c语言c++蓝桥杯
最短路径问题->返回c/c++蓝桥杯经典编程题100道-目录目录最短路径问题一、题型解释二、例题问题描述三、C语言实现解法1:Dijkstra算法(正权图,难度★★)解法2:Bellman-Ford算法(含负权边,难度★★★)四、C++实现解法1:Dijkstra算法(优先队列优化,难度★★☆)解法2:Floyd-Warshall算法(多源最短路径,难度★★★)五、总结对比表六、特殊方法与内置函数
- ACM寒假培训7--图与树
ZIZIZIZIZ()
算法图论数据结构笔记动态规划
学习总结最短路问题一.Floyd算法1.不可以直接到达的点设为正无穷2.自己到自己的距离设为03.d[k][i][j]为前k个点中i到j的最短路降维代码实现constintN=105;intd[N][N],n;voidfloyd(){for(intk=1;kusingnamespacestd;constintINF=numeric_limits::max();structEdge{intto;in
- Codeforces Round 977 (Div. 2)E1 Digital Village (Easy Version)(Floyd,贪心)
Auto114514
Codeforces算法c++数据结构图论
题目链接CodeforcesRound977(Div.2)E1DigitalVillage(EasyVersion)思路首先,我们注意到nnn的最大值只有400400400。因此,我们可以先用FloydFloydFloyd算法预处理出任意两座城市之间的最大延迟时间。之后,我们通过在线操作,每次贪心地选出最优的一个城市,并不断更新答案。即,我们先选出k=1k=1k=1时的最优解,之后从剩下的点里面挑
- 代码随想录 day62 第十一章 图论part11
TENET信条
图论python开发语言
第十一章:图论part11Floyd算法精讲Floyd算法代码很简单,但真正理解起原理还是需要花点功夫,大家在看代码的时候,会发现Floyd的代码很简单,甚至看一眼就背下来了,但我为了讲清楚原理,本篇还是花了大篇幅来讲解。https://www.programmercarl.com/kamacoder/0097.%E5%B0%8F%E6%98%8E%E9%80%9B%E5%85%AC%E5%9B%
- 数据结构-图(二)
大明湖的狗凯.
数据结构数据结构算法
文章目录图的基本应用:深入解析与实践一、引言二、最小(代价)生成树(一)概念与性质(二)算法实现三、最短路径(一)概念与分类(二)单源最短路径算法(三)多源最短路径算法-Floyd-Warshall算法图的基本应用:深入解析与实践一、引言图作为一种强大的数据结构,在众多领域有着广泛而重要的应用。从计算机网络到项目管理,从交通规划到电路设计,图的相关算法和概念都发挥着关键作用。本文将详细探讨图的几个
- DS图(下)(19)
tan180°
DS开发语言c++数据结构后端
文章目录前言一、最短路径的概念二、单源最短路径-Dijkstra算法三、单源最短路径-Bellman-Ford算法四、多源最短路径-Floyd-Warshall算法总结前言 加油,今天就是图的最后一篇了,撑住!! 今天我们要学的就是最短路径问题!!一、最短路径的概念最短路径问题:从带权有向图中的某一顶点出发,找出一条通往另一顶点的最短路径,最短指的是路径各边的权值总和达到最小,最短路径可分为单
- Floyd 算法
ん贤
算法
目录一、基础介绍二、核心思想三、核心例题1、引出为何用动态规划:2、算法:3、确定dp数组(dptable)以及下标的含义:4、确定递推公式:5、dp数组如何初始化:一、基础介绍首相简单的说一下,Floyed算法又称Floyd-Warshall算法,是为了纪念罗伯特•弗洛伊德(RobertW.Floyd)。所以不要对这个奇怪的名字感到吃力。Floyd算法是一种在具有正或负边缘权重(但没有负周期)的
- 图论——最短路
IGP9
算法图论
图片来自Acwing平台本文主要内容:朴素Dijkstra算法堆优化Dijkstra算法Bellman-Ford算法SPFA算法Floyd算法1朴素Dijkstra算法主要功能:求没有负权边的图的单源最短路时间复杂度:o(n2)基本思路:假设存在一个集合s,集合中的所有节点的最短路距离已经被求解,并且存入到了dist[]中每次挑选集合外dist值最小的节点t加入集合s,用该点更新其他所以节点循环n
- 图论——floyd算法
0x7F7F7F7F
算法图论
acwing1125.牛的旅行1.先做一边floydfloydfloyd,求出每个点到其他各点的最短距离,得到dist[][]dist[][]dist[][]数组。2.求出maxd[]maxd[]maxd[]数组,存放每个点到可达点的距离最大值(遍历dist数组可得),遍历maxdmaxdmaxd可得到各个牧场内的最大的直径res1res1res1。3.连接两个不在同一牧场的点(i,j)(i,j)
- 2023年数学建模动态规划算法在最短路径问题中的应用:以Floyd算法为例
人工智能_SYBH
算法matlab数据结构动态规划
订阅专栏后9月比赛期间会分享思路及Matlab代码数学建模是将实际问题抽象化为数学问题,并采用数学工具和技巧进行求解的过程。在实际应用中,数学建模是解决问题的一种有效方法。本文将介绍Floyd算法在数学建模中的应用。Floyd算法是解决最短路径问题的一种经典动态规划算法。最短路径问题是指在一个加权有向图中,从一个源节点到其他各节点的最短路径问题。在实际应用中,最短路径问题广泛应用于交通运输、通信网
- 七.网络模型
Kylin524
运筹学python
最小(支撑)树问题最小部分树求解:破圈法:任取一圈,去掉圈中最长边,直到无圈;加边法:取图G的n个孤立点{v1,v2,…,vn}作为一个支撑图,从最短边开始往支撑图中添加,见圈回避,直到连通(有n-1条边)最短路问题求最短路有两种算法:求从某一点至其它各点之间最短离的狄克斯屈拉(Dijkstra)算法求网络图上任意两点之间最短路的Floyd(弗洛伊德)矩阵算法最短路问题的数学模型最大流问题:最大流
- 像素空间文生图之Imagen原理详解
funNLPer
AI算法ImagenstablediffusionAIGC
论文:PhotorealisticText-to-ImageDiffusionModelswithDeepLanguageUnderstanding项目地址:https://imagen.research.google/代码(非官方):https://github.com/deep-floyd/IF模型权重:https://huggingface.co/DeepFloyd/IF-I-XL-v1.0
- [黑洞与暗粒子]没有光的世界
comsci
无论是相对论还是其它现代物理学,都显然有个缺陷,那就是必须有光才能够计算
但是,我相信,在我们的世界和宇宙平面中,肯定存在没有光的世界....
那么,在没有光的世界,光子和其它粒子的规律无法被应用和考察,那么以光速为核心的
&nbs
- jQuery Lazy Load 图片延迟加载
aijuans
jquery
基于 jQuery 的图片延迟加载插件,在用户滚动页面到图片之后才进行加载。
对于有较多的图片的网页,使用图片延迟加载,能有效的提高页面加载速度。
版本:
jQuery v1.4.4+
jQuery Lazy Load v1.7.2
注意事项:
需要真正实现图片延迟加载,必须将真实图片地址写在 data-original 属性中。若 src
- 使用Jodd的优点
Kai_Ge
jodd
1. 简化和统一 controller ,抛弃 extends SimpleFormController ,统一使用 implements Controller 的方式。
2. 简化 JSP 页面的 bind, 不需要一个字段一个字段的绑定。
3. 对 bean 没有任何要求,可以使用任意的 bean 做为 formBean。
使用方法简介
- jpa Query转hibernate Query
120153216
Hibernate
public List<Map> getMapList(String hql,
Map map) {
org.hibernate.Query jpaQuery = entityManager.createQuery(hql);
if (null != map) {
for (String parameter : map.keySet()) {
jp
- Django_Python3添加MySQL/MariaDB支持
2002wmj
mariaDB
现状
首先,Django@Python2.x 中默认的引擎为 django.db.backends.mysql 。但是在Python3中如果这样写的话,会发现 django.db.backends.mysql 依赖 MySQLdb[5] ,而 MySQLdb 又不兼容 Python3 于是要找一种新的方式来继续使用MySQL。 MySQL官方的方案
首先据MySQL文档[3]说,自从MySQL
- 在SQLSERVER中查找消耗IO最多的SQL
357029540
SQL Server
返回做IO数目最多的50条语句以及它们的执行计划。
select top 50
(total_logical_reads/execution_count) as avg_logical_reads,
(total_logical_writes/execution_count) as avg_logical_writes,
(tot
- spring UnChecked 异常 官方定义!
7454103
spring
如果你接触过spring的 事物管理!那么你必须明白 spring的 非捕获异常! 即 unchecked 异常! 因为 spring 默认这类异常事物自动回滚!!
public static boolean isCheckedException(Throwable ex)
{
return !(ex instanceof RuntimeExcep
- mongoDB 入门指南、示例
adminjun
javamongodb操作
一、准备工作
1、 下载mongoDB
下载地址:http://www.mongodb.org/downloads
选择合适你的版本
相关文档:http://www.mongodb.org/display/DOCS/Tutorial
2、 安装mongoDB
A、 不解压模式:
将下载下来的mongoDB-xxx.zip打开,找到bin目录,运行mongod.exe就可以启动服务,默
- CUDA 5 Release Candidate Now Available
aijuans
CUDA
The CUDA 5 Release Candidate is now available at http://developer.nvidia.com/<wbr></wbr>cuda/cuda-pre-production. Now applicable to a broader set of algorithms, CUDA 5 has advanced fe
- Essential Studio for WinRT网格控件测评
Axiba
JavaScripthtml5
Essential Studio for WinRT界面控件包含了商业平板应用程序开发中所需的所有控件,如市场上运行速度最快的grid 和chart、地图、RDL报表查看器、丰富的文本查看器及图表等等。同时,该控件还包含了一组独特的库,用于从WinRT应用程序中生成Excel、Word以及PDF格式的文件。此文将对其另外一个强大的控件——网格控件进行专门的测评详述。
网格控件功能
1、
- java 获取windows系统安装的证书或证书链
bewithme
windows
有时需要获取windows系统安装的证书或证书链,比如说你要通过证书来创建java的密钥库 。
有关证书链的解释可以查看此处 。
public static void main(String[] args) {
SunMSCAPI providerMSCAPI = new SunMSCAPI();
S
- NoSQL数据库之Redis数据库管理(set类型和zset类型)
bijian1013
redis数据库NoSQL
4.sets类型
Set是集合,它是string类型的无序集合。set是通过hash table实现的,添加、删除和查找的复杂度都是O(1)。对集合我们可以取并集、交集、差集。通过这些操作我们可以实现sns中的好友推荐和blog的tag功能。
sadd:向名称为key的set中添加元
- 异常捕获何时用Exception,何时用Throwable
bingyingao
用Exception的情况
try {
//可能发生空指针、数组溢出等异常
} catch (Exception e) {
- 【Kafka四】Kakfa伪分布式安装
bit1129
kafka
在http://bit1129.iteye.com/blog/2174791一文中,实现了单Kafka服务器的安装,在Kafka中,每个Kafka服务器称为一个broker。本文简单介绍下,在单机环境下Kafka的伪分布式安装和测试验证 1. 安装步骤
Kafka伪分布式安装的思路跟Zookeeper的伪分布式安装思路完全一样,不过比Zookeeper稍微简单些(不
- Project Euler
bookjovi
haskell
Project Euler是个数学问题求解网站,网站设计的很有意思,有很多problem,在未提交正确答案前不能查看problem的overview,也不能查看关于problem的discussion thread,只能看到现在problem已经被多少人解决了,人数越多往往代表问题越容易。
看看problem 1吧:
Add all the natural num
- Java-Collections Framework学习与总结-ArrayDeque
BrokenDreams
Collections
表、栈和队列是三种基本的数据结构,前面总结的ArrayList和LinkedList可以作为任意一种数据结构来使用,当然由于实现方式的不同,操作的效率也会不同。
这篇要看一下java.util.ArrayDeque。从命名上看
- 读《研磨设计模式》-代码笔记-装饰模式-Decorator
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.io.BufferedOutputStream;
import java.io.DataOutputStream;
import java.io.FileOutputStream;
import java.io.Fi
- Maven学习(一)
chenyu19891124
Maven私服
学习一门技术和工具总得花费一段时间,5月底6月初自己学习了一些工具,maven+Hudson+nexus的搭建,对于maven以前只是听说,顺便再自己的电脑上搭建了一个maven环境,但是完全不了解maven这一强大的构建工具,还有ant也是一个构建工具,但ant就没有maven那么的简单方便,其实简单点说maven是一个运用命令行就能完成构建,测试,打包,发布一系列功
- [原创]JWFD工作流引擎设计----节点匹配搜索算法(用于初步解决条件异步汇聚问题) 补充
comsci
算法工作PHP搜索引擎嵌入式
本文主要介绍在JWFD工作流引擎设计中遇到的一个实际问题的解决方案,请参考我的博文"带条件选择的并行汇聚路由问题"中图例A2描述的情况(http://comsci.iteye.com/blog/339756),我现在把我对图例A2的一个解决方案公布出来,请大家多指点
节点匹配搜索算法(用于解决标准对称流程图条件汇聚点运行控制参数的算法)
需要解决的问题:已知分支
- Linux中用shell获取昨天、明天或多天前的日期
daizj
linuxshell上几年昨天获取上几个月
在Linux中可以通过date命令获取昨天、明天、上个月、下个月、上一年和下一年
# 获取昨天
date -d 'yesterday' # 或 date -d 'last day'
# 获取明天
date -d 'tomorrow' # 或 date -d 'next day'
# 获取上个月
date -d 'last month'
#
- 我所理解的云计算
dongwei_6688
云计算
在刚开始接触到一个概念时,人们往往都会去探寻这个概念的含义,以达到对其有一个感性的认知,在Wikipedia上关于“云计算”是这么定义的,它说:
Cloud computing is a phrase used to describe a variety of computing co
- YII CMenu配置
dcj3sjt126com
yii
Adding id and class names to CMenu
We use the id and htmlOptions to accomplish this. Watch.
//in your view
$this->widget('zii.widgets.CMenu', array(
'id'=>'myMenu',
'items'=>$this-&g
- 设计模式之静态代理与动态代理
come_for_dream
设计模式
静态代理与动态代理
代理模式是java开发中用到的相对比较多的设计模式,其中的思想就是主业务和相关业务分离。所谓的代理设计就是指由一个代理主题来操作真实主题,真实主题执行具体的业务操作,而代理主题负责其他相关业务的处理。比如我们在进行删除操作的时候需要检验一下用户是否登陆,我们可以删除看成主业务,而把检验用户是否登陆看成其相关业务
- 【转】理解Javascript 系列
gcc2ge
JavaScript
理解Javascript_13_执行模型详解
摘要: 在《理解Javascript_12_执行模型浅析》一文中,我们初步的了解了执行上下文与作用域的概念,那么这一篇将深入分析执行上下文的构建过程,了解执行上下文、函数对象、作用域三者之间的关系。函数执行环境简单的代码:当调用say方法时,第一步是创建其执行环境,在创建执行环境的过程中,会按照定义的先后顺序完成一系列操作:1.首先会创建一个
- Subsets II
hcx2013
set
Given a collection of integers that might contain duplicates, nums, return all possible subsets.
Note:
Elements in a subset must be in non-descending order.
The solution set must not conta
- Spring4.1新特性——Spring缓存框架增强
jinnianshilongnian
spring4
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- shell嵌套expect执行命令
liyonghui160com
一直都想把expect的操作写到bash脚本里,这样就不用我再写两个脚本来执行了,搞了一下午终于有点小成就,给大家看看吧.
系统:centos 5.x
1.先安装expect
yum -y install expect
2.脚本内容:
cat auto_svn.sh
#!/bin/bash
- Linux实用命令整理
pda158
linux
0. 基本命令 linux 基本命令整理
1. 压缩 解压 tar -zcvf a.tar.gz a #把a压缩成a.tar.gz tar -zxvf a.tar.gz #把a.tar.gz解压成a
2. vim小结 2.1 vim替换 :m,ns/word_1/word_2/gc
- 独立开发人员通向成功的29个小贴士
shoothao
独立开发
概述:本文收集了关于独立开发人员通向成功需要注意的一些东西,对于具体的每个贴士的注解有兴趣的朋友可以查看下面标注的原文地址。
明白你从事独立开发的原因和目的。
保持坚持制定计划的好习惯。
万事开头难,第一份订单是关键。
培养多元化业务技能。
提供卓越的服务和品质。
谨小慎微。
营销是必备技能。
学会组织,有条理的工作才是最有效率的。
“独立
- JAVA中堆栈和内存分配原理
uule
java
1、栈、堆
1.寄存器:最快的存储区, 由编译器根据需求进行分配,我们在程序中无法控制.2. 栈:存放基本类型的变量数据和对象的引用,但对象本身不存放在栈中,而是存放在堆(new 出来的对象)或者常量池中(字符串常量对象存放在常量池中。)3. 堆:存放所有new出来的对象。4. 静态域:存放静态成员(static定义的)5. 常量池:存放字符串常量和基本类型常量(public static f