Walk(概率DP)

Walk

Time Limit: 30000/15000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 291    Accepted Submission(s): 200
Special Judge


Problem Description
I used to think I could be anything, but now I know that I couldn't do anything. So I started traveling.

The nation looks like a connected bidirectional graph, and I am randomly walking on it. It means when I am at node i, I will travel to an adjacent node with the same probability in the next step. I will pick up the start node randomly (each node in the graph has the same probability.), and travel for d steps, noting that I may go through some nodes multiple times.

If I miss some sights at a node, it will make me unhappy. So I wonder for each node, what is the probability that my path doesn't contain it.
 

 

Input
The first line contains an integer T, denoting the number of the test cases.

For each test case, the first line contains 3 integers n, m and d, denoting the number of vertices, the number of edges and the number of steps respectively. Then m lines follows, each containing two integers a and b, denoting there is an edge between node a and node b.

T<=20, n<=50, n-1<=m<=n*(n-1)/2, 1<=d<=10000. There is no self-loops or multiple edges in the graph, and the graph is connected. The nodes are indexed from 1.
 

 

Output
For each test cases, output n lines, the i-th line containing the desired probability for the i-th node.

Your answer will be accepted if its absolute error doesn't exceed 1e-5.
 

 

Sample Input
2
5 10 100
1 2
2 3
3 4
4 5
1 5
2 4
3 5
2 5
1 4
1 3
10 10 10
1 2
2 3
3 4
4 5
5 6
6 7
7 8
8 9
9 10
4 9
 

 

Sample Output

 

0.0000000000
0.0000000000
0.0000000000
0.0000000000
0.0000000000
0.6993317967
0.5864284952
0.4440860821
0.2275896991
0.4294074591
0.4851048742
0.4896018842
0.4525044250
0.3406567483
0.6421630037

     题意:

     给出 T 组case,后给出 N 个结点,M 条边,还有 D 步。任意选择一个起点开始,求出所有在 D 步内不经过结点 i 的概率。输出概率。

 

     思路:

     概率 DP。dp [ i ] [ k ] 表示在 k 步内不经过 i 点的概率,故更新的时候更新所有边中不存在 i 结点的边,最后概率即为 sum { dp [ j ] [ d ] ( 1 <= j <= n && j != i ) }。

 

     AC:

#include <cstdio>
#include <cstring>
#include <algorithm>
#include <vector>

using namespace std;

const int VMAX = 55;
const int STEP = 10005;

vector<int> G[VMAX];
double dp[STEP][VMAX];

int main() {

    int t;
    scanf("%d", &t);
    while (t--) {
        int n, m, d;

        scanf("%d%d%d", &n, &m, &d);

        for (int i = 1; i <= n; ++i)
            G[i].clear();

        while (m--) {
            int a, b;
            scanf("%d%d", &a, &b);
            G[a].push_back(b);
            G[b].push_back(a);
        }

        for (int nn = 1; nn <= n; ++nn) {
            memset(dp, 0, sizeof(dp));
            for (int i = 1; i <= n; ++i)
                dp[0][i] = (1.0 / n);

            for (int k = 1; k <= d; ++k) {
                for (int i = 1; i <= n; ++i) {

                    if (i == nn) continue;

                    for (int j = 0; j < G[i].size(); ++j) {
                        int v = G[i][j];
                        if (v == nn) continue;
                        dp[k][v] += dp[k - 1][i] * (1.0 / G[i].size());
                    }

                }
            }

            double sum = 0;
            for (int i = 1; i <= n; ++i)
                sum += dp[d][i];

            printf("%.10lf\n", sum);
        }

    }

    return 0;
}

 

你可能感兴趣的:(dp)