Linux下程序的Profile工具

我们在写程序,特别是嵌入式程序的时候,通常需要对程序的性能进行分析,以便程序能够更快更好地运行,达到实时(real-time)的目的。如果程序很大,分析起来就很困难。如果有个工具能够自动进行程序的性能分析,那就最好了。这里介绍一种Linux下程序的Profiling工具----GNU profiler。

GNU gprof能够打印出程序运行中各个函数消耗的时间,可以帮助程序员找出众多函数中耗时最多的函数。产生程序运行时候的函数调用关系,包括调用次数,可以帮助程序员分析程序的运行流程。有了函数的调用关系,这会让开发人员大大提高工作效率,不用费神地去一点点找出程序的运行流程,这对小程序来说可能效果不是很明显,但对于有几万,几十万代码量的工程来说,效率是毋庸置疑的!而且这个功能对于维护旧代码或者是分析Open Source来说那是相当诱人的,有了调用图,对程序的运行框架也就有了一个大体了解,知道了程序的“骨架“,分析它也就不会再那么茫然,尤其是对自己不熟悉的代码和Open Source。

gprof的基本用法:
1. 使用 -pg 选项编译和链接你的应用程序
    
    在gcc编译程序的时候,加上-pg选项,例如:
   
 gcc -pg -o test test.c
    这样就生成了可执行文件test。如果是大项目,就在makefile里面修改编译选项,-pg放在那里都行。

2. 执行你的应用程序使之生成供gprof 分析的数据

    运行刚才的程序:./test,这样就生成了一个gmon.out文件,该文件就包含了profiling的数据。

3. 使用gprof 分析你的应用程序生成的数据

    gprof test gmon.out > profile.txt
    使用上面的命令,gprof就可以分析程序test的性能,将profiling的结果放在profile.txt文件中,打开就可以看到分析的结果。通过对结果的分析来改进我们的程序,从而达到我们的目的。

GNU gprof是个很不错的工具,大家写程序时可以多用用。我现在用gprof来profiling我的程序,把耗时最多的函数或运算找出来,用FPGA芯片实现,从而达到real-time的目的。

gprof使用介绍

gprof介绍
gprof
GNU profiler工具。可以显示程序运行的“flat profile”,包括每个函数的调用次数,每个函数消耗的处理器时间。也可以显示调用图,包括函数的调用关系,每个函数调用花费了多少时间。还可以显示注释的源代码,是程序源代码的一个复本,标记有程序中每行代码的执行次数。

 

gprof编译程序
在编译或链接源程序的时候在编译器的命令行参数中加入“-pg”选项,编译时编译器会自动在目标代码中插入用于性能测试的代码片断,这些代码在程序在运行时采集并记录函数的调用关系和调用次数,以及采集并记录函数自身执行时间和子函数的调用时间,程序运行结束后,会在程序退出的路径下生成一个gmon.out文件。这个文件就是记录并保存下来的监控数据。可以通过命令行方式的gprof或图形化的Kprof来解读这些数据并对程序的性能进行分析。另外,如果想查看库函数的profiling,需要在编译是再加入“-lc_p”编译参数代替“-lc”编译参数,这样程序会链接libc_p.a库,才可以产生库函数的profiling信息。如果想执行一行一行的profiling,还需要加入“-g”编译参数。
例如如下命令行:
gcc -Wall -g -pg -lc_p example.c -o example

 

执行gprof
执行如下命令行,即可执行gprof
gprof OPTIONS EXECUTABLE-FILE gmon.out BB-DATA [YET-MORE-PROFILE-DATA -FILES...] [> OUTFILE]

 

gprof产生的信息
 %                        the percentage of the total running time of the
time                     program used by this function.
                           
函数使用时间占所有时间的百分比。
cumulative          a running sum of the number of seconds accounted
 seconds             for by this function and those listed above it.
                           
函数和上列函数累计执行的时间。
 self                    the number of seconds accounted for by this
seconds             function alone.  This is the major sort for this
                          listing.
                          
函数本身所执行的时间。
calls                   the number of times this function was invoked, if
                          this function is profiled, else blank.
                          
函数被调用的次数
 self                   the average number of milliseconds spent in this
ms/call               function per call, if this function is profiled,
                         else blank.
                          
每一次调用花费在函数的时间microseconds
 total                  the average number of milliseconds spent in this
ms/call               function and its descendents per call, if this 
                          function is profiled, else blank.
                          
每一次调用,花费在函数及其衍生函数的平均时间microseconds
name                 the name of the function.  This is the minor sort
                          for this listing. The index shows the location of
                          the function in the gprof listing. If the index is
                          in parenthesis it shows where it would appear in
                          the gprof listing if it were to be printed.
                          
函数名

 

O.S 使用Gnu gprof进行Linux平台下的程序分析

Gprof 简介:
Gprof
功能:打印出程序运行中各个函数消耗的时间,可以帮助程序员找出众多函数中耗时最多的函数。产生程序运行时候的函数调用关系,包括调用次数,可以帮助程序员分析程序的运行流程。

有了函数的调用关系,这会让开发人员大大提高工作效率,不用费心地去一点点找出程序的运行流程,这对小程序来说可能效果不是很明显,但对于有几万,几十万代码量的工程来说,效率是毋庸置疑的!而且这个功能对于维护旧代码或者是分析Open Source来说那是相当诱人的,有了调用图,对程序的运行框架也就有了一个大体了解,知道了程序的骨架,分析它也就不会再那么茫然,尤其是对自己不熟悉的代码和Open Source。费话不多说了,让我们开始我们的分析之旅吧!

Gprof 
实现原理
通过在编译和链接你的程序的时候(使用 -pg 编译和链接选项),gcc 在你应用程序的每个函数中都加入了一个名为mcount ( or “_mcount” , or “__mcount” , 依赖于编译器或操作系统)的函数也就是说你的应用程序里的每一个函数都会调用mcount, mcount 会在内存中保存一张函数调用图,并通过函数调用堆栈的形式查找子函数和父函数的地址。这张调用图也保存了所有与函数相关的调用时间、调用次数等等的所有信息

Gprof
基本用法:
1
 使用 -pg 编译和链接你的应用程序。 
2
 执行你的应用程序使之生成供gprof 分析的数据。
3
 使用gprof 程序分析你的应用程序生成的数据。

Gprof 
简单使用:
让我们简单的举个例子来看看Gprof是如何使用的。
1
.打开linux终端。新建一个test.c文件,并生用-pg 编译和链接该文件。

test.c 文件内容如下:
引文:

 

 

       #include "stdio.h"
       #include "stdlib.h"

void a(){
    printf("\t\t+---call a() function\n");
}

void c(){
    printf("\t\t+---call c() function\n");
}

int b() {
    printf("\t+--- call b() function\n");
    a();
    c();
    return 0;
}

int main(){
    printf(" main() function()\n");
    b();
}

 

 

命令行里面输入下面命令,没加-c选项,gcc 会默认进行编译并链接生成a.out:
引文:

[linux /home/test]$gcc -pg test.c

如果没有编译错误,gcc会在当前目录下生成一个a.out文件,当然你也可以使用 –o 选项给生成的文件起一个别的名字,像 gcc –pg test.c –o test , gcc会生成一个名为test的可执行文件,在命令行下输入[linux /home/test]$./test , 就可以执行该程序了,记住一定要加上 ./ 否则程序看上去可能是执行,可是什么输出都没有。

2
.执行你的应用程序使之生成供gprof 分析的数据。 命令行里面输入:
引文:

[linux /home/test]$a.out
main() function()
    +--- call b() function
        +---call a() function
        +---call c() function
[linux /home/test]$

你会在当前目录下看到一个gmon.out 文件 这个文件就是供gprof 分析使用的。

3
.使用gprof 程序分析你的应用程序生成的数据。
命令行里面输入:
引文:

[linux /home/test]$ gprof -b a.out gmon.out | less

由于gprof输出的信息比较多,这里使用了 less 命令,该命令可以让我们通过上下方向键查看gprof产生的输出,表示gprof -b a.out gmon.out 的输出作为 less的输入。下面是我从gprof输出中摘抄出的与我们有关的一些详细信息。
引文:

Flat profile:
 
Each sample counts as 0.01 seconds.
 no time accumulated
 
  %   cumulative   self              self     total
 time   seconds   seconds    calls  Ts/call  Ts/call  name
  0.00      0.00     0.00        1     0.00     0.00  a
  0.00      0.00     0.00        1     0.00     0.00  b
  0.00      0.00     0.00        1     0.00     0.00  c


                        Call graph
 

granularity: each sample hit covers 4 byte(s) no time propagated
 
index % time    self  children    called     name
                0.00    0.00       1/1           b [2]
[1]      0.0    0.00    0.00       1         a [1]
-----------------------------------------------
                0.00    0.00       1/1           main [10]
[2]      0.0    0.00    0.00       1         b [2]
                0.00    0.00       1/1           c [3]
                0.00    0.00       1/1           a [1]
-----------------------------------------------
                0.00    0.00       1/1           b [2]
[3]      0.0    0.00    0.00       1         c [3]
-----------------------------------------------

Index by function name
 
   [1] a                       [2] b                       [3] c

从上面的输出我们能明显的看出来,main 调用了 b 函数, 函数分别调用了 c 函数。由于我们的函数只是简单的输出了一个字串,故每个函数的消耗时间都是秒。

 

 

使用gprof分析程序

gprof介绍
gprof
是一个GNU profiler工具。可以显示程序运行的“flat profile”,包括每个函数的调用次数,每个函数消耗的处理器时间,也可以显示调用图,包括函数的调用关系,每个函数调用花费了多少时间。还可以显示注释的源代码--是程序源代码的一个复本,标记有程序中每行代码的执行次数。

基本用法:
1
.使用-pg选项编译和链接你的应用程序。
2
. 执行你的应用程序,使之运行完成后生成供gprof分析的数据文件(默认是gmon.out)。
3
. 使用gprof程序分析你的应用程序生成的数据,例如:gporf a.out gmon.out

gprof 实现原理
gprof
并不神奇,在编译和链接程序的时候(使用 -pg 编译和链接选项),gcc 在你应用程序的每个函数中都加入了一个名为mcountor“_mcount”, or“__mcount”)的函数,也就是说-pg编译的应用程序里的每一个函数都会调用mcount, mcount会在内存中保存一张函数调用图,并通过函数调用堆栈的形式查找子函数和父函数的地址。这张调用图也保存了所有与函数相关的调用时间,调用次数等等的所有信息。

常用的gprof命令选项: 
-b            
不再输出统计图表中每个字段的详细描述。
 
-p            
只输出函数的调用图(Call graph的那部分信息)。

-q            
只输出函数的时间消耗列表。
-e Name       
不再输出函数Name 及其子函数的调用图(除非它们有未被限制的其它父函数)。可以给定多个 -e 标志。一个 -e 标志只能指定一个函数。
-E Name       
不再输出函数Name 及其子函数的调用图,此标志类似于 -e 标志,但它在总时间和百分比时间的计算中排除了由函数Name 及其子函数所用的时间。
-f Name       
输出函数Name 及其子函数的调用图。可以指定多个 -f 标志。一个 -f 标志只能指定一个函数。 
-F Name       
输出函数Name 及其子函数的调用图,它类似于 -f 标志,但它在总时间和百分比时间计算中仅使用所打印的例程的时间。可以指定多个 -F 标志。一个 -F 标志只能指定一个函数。-F 标志覆盖 -E 标志。
 
-z           
显示使用次数为零的例程(按照调用计数和累积时间计算)。

使用注意:
1
)一般gprof只能查看用户函数信息。如果想查看库函数的信息,需要在编译是再加入-lc_p</span

你可能感兴趣的:(C++,c,linux,gcc,C#)