启发式算法

大自然是神奇的,它造就了很多巧妙的手段和运行机制。受大自然的启发,人们从大自然的运行规律中找到了许多解决实际问题的方法。对于那些受大自然的运行规律或者面向具体问题的经验、规则启发出来的方法,人们常常称之为启发式算法(Heuristic Algorithm)。现在的启发式算法也不是全部来自然的规律,也有来自人类积累的工作经验。

启发式算法的发展:
启发式算法的计算量都比较大,所以启发式算法伴随着计算机技术的发展,取得了巨大的成就。
40年代:由于实际需要,提出了启发式算法(快速有效)。
50年代:逐步繁荣,其中 贪婪算法和局部搜索 等到人们的关注。
60年代: 反思,发现以前提出的启发式算法速度很快,但是解得质量不能保证,而且对大规
        模的问题仍然无能为力(收敛速度慢)。
70年代:计算复杂性理论的提出,NP问题。许多实际问题不可能在合理的时间范围内找到全局最优解。发现贪婪算法和局部搜索算法速度快,但解不好的原因主要是他们只是在局部的区域内找解,等到的解没有全局最优性。
        由此必须引入新的搜索机制和策略………..
        Holland的遗传算法出现了(Genetic Algorithm)再次引发了人们研究启发式算法的
        兴趣。
80年代以后:
        模拟退火算法(Simulated Annealing Algorithm),人工神经网络(Artificial Neural Network),禁忌搜索(Tabu Search)相继出现。
最近比较热或刚热过去的:
演化算法(Evolutionary Algorithm), 蚁群算法(Ant Algorithms), 拟人拟物算法,量子算法等。
各个算法的思想这就不再详细给出(以后会给出一些,关注我的blog) ,为什么要引出启发式算法,因为NP问题,一般的经典算法是无法求解,或求解时间过长,我们无法接受。这里要说明的是:启发式算法得到的解只是近似最优解(近似到什么程度,只有根据具体问题才能给出). 二十一世纪的最大的数学难题NP?=P,如果NP=P启发式算法就不在有存在的意义。

启发式算法的不足和如何解决方法:
(水平有限 仅仅提出6点)
启发式算法目前缺乏统一、完整的理论体系。
很难解决! 启发式算法的提出就是根据经验提出,没有什么坚实的理论基础。
由于NP理论,启发式算法就解得全局最优性无法保证。
等NP?=P有结果了再说吧,不知道这个世纪能不能行。
各种启发式算法都有个自优点如何,完美结合。
如果你没有实际经验,你就别去干这个,相结合就要做大量尝试,或许会有意外的收获。
启发式算法中的参数对算法的效果起着至关重要的作用,如何有效设置参数。
还是那句话,这是经验活但还要悟性,只有try again………..
启发算法缺乏有效的迭代停止条件。
还是经验,迭代次数100不行,就200,还不行就1000…………
还不行估计就是算法有问题,或者你把它用错地方了………..
启发式算法收敛速度的研究等。
你会发现,没有完美的东西,要快你就要付出代价,就是越快你得到的解也就远差。

优胜劣汰是大自然的普遍规律,它主要通过选择和变异来实现。选择是优化的基本思想,变异(多样化)是随机搜索或非确定搜索的基本思想。“优胜劣汰”是算法搜索的核心,根据“优胜劣汰”策略的不同,可以获得不同的超启发式算法。超启发式算法的主要思想来自于人类经过长期对物理、生物、社会的自然现象仔细的观察和实践,以及对这些自然现象的深刻理解,逐步向大自然学习,模仿其中的自然现象的运行机制而得到的。

遗传算法:是根据生物演化,模拟演化过程中基因染色体的选择、交叉和变异得到的算法。在进化过程中,较好的个体有较大的生存几率。

模拟退火:是模拟统计物理中固体物质的结晶过程。在退火的过程中,如果搜索到好的解接受;否则,以一定的概率接受不好的解(即实现多样化或变异的思想),达到跳出局部最优解得目的。

神经网络:模拟大脑神经处理的过程,通过各个神经元的竞争和协作,实现选择和变异的过程。

禁忌搜索:模拟人的经验,通过禁忌表记忆最近搜索过程中的历史信息,禁忌某些解,以避免走回头路,达到跳出局部最优解的目的。

蚂蚁算法:模拟蚂蚁的行为,拟人拟物,向蚂蚁的协作方式学习。

这几种超启发式算法都有一个共同的特点:从随机的可行初始解出发,才用迭代改进的策略,去逼近问题的最优解。

他们的基本要素:(1)随机初始可行解;

(2)给定一个评价函数(常常与目标函数值有关);

(3)邻域,产生新的可行解;

(4)选择和接受解得准则;

(5)终止准则。

其中(4)集中反映了超启发式算法的克服局部最优的能力。

  虽然人们研究对启发式算法的研究将近50年,但它还有很多不足:

1.启发式算法目前缺乏统一、完整的理论体系。

2.由于NP理论,各种启发式算法都不可避免的遭遇到局部最优的问题,如何判断

3.各种启发式算法都有个自优点如何,完美结合。

4.启发式算法中的参数对算法的效果起着至关重要的作用,如何有效设置参数。

5.启发算法缺乏有效的迭代停止条件。

6.启发式算法收敛速度的研究等。

 

 

驾驶汽车到达某人的家,写成算法是这样的:沿167 号高速公路往南行至Puyallup;从South Hill Mall 出口出来后往山上开4.5 英里;在一个杂物店旁边的红绿灯路口右转,接着在第一个路口左转;从左边褐色大房子的车道进去,就是North Cedar 路714 号。

用启发式方法来描述则可能是这样:找出上一次我们寄给你的信,照着信上面的寄出地址开车到这个镇;到了之后你问一下我们的房子在哪里。这里每个人都认识我们——肯定有人会很愿意帮助你的;如果你找不到人,那就找个公共电话亭给我们打电话,我们会出来接你。

算法和启发式方法之间的差别很微妙,两个术语的意思也有一些重叠。它们之间的差别就在于其距离最终解决办法的间接程度:算法直接给你解决问题的指导,而启发式方法则告诉你该如何发现这些指导信息,或者至少到哪里去寻找它们。

----------------------------------------------------------------------------------------------------------------------------

从上面的启发式算法的解释可以看出,启发式算法的难点是建立符合实际问题的一系列启发式规则。启发式算法的优点在于它比盲目型的搜索法要高效,一个经过仔细设计的启发函数,往往在很快的时间内就可得到一个搜索问题的最优解,对于NP问题,亦可在多项式时间内得到一个较优解。

你可能感兴趣的:(算法,生物,ant,Blog)