/* description: * * 动态规划算法之矩阵连乘问题 * 1)矩阵Ai*Ai+1*...*Aj简记为A[i:j],所需的最小计算次数为m[i][j]. * 2)当i=j时,m[i][j] = 0 * 3)当 i<j时,假设使m[i][j]最小的最优次序是在Ak和Ak+1之间断开, * 则m[i][j] = m[i][k]+m[k+1][j]+p[i-1]*p[k]*p[j],其中k的位置可以是:i, i+1, ..., j-1, * 数组p[]存储各个矩阵的维数,s[i][j]标记m[i][j]的断开位置k. * * auther: cm * date: 2010/11/16 */ public class MatrixChain { private static final int MAX_VALUE = Integer.MAX_VALUE; public static void matrixChain(int[] p, int[][] m, int[][] s) { int n = p.length - 1; for (int i = 1; i <= n; i++) { m[i][i] = 0; } for (int r = 2; r <= n; r++) { for (int i = 1; i <= n - r + 1; i++) { int j = i + r - 1; m[i][j] = MAX_VALUE; for (int k = i; k < j; k++) { int temp = m[i][k] + m[k + 1][j] + p[i - 1] * p[k] * p[j]; if (temp < m[i][j]) { m[i][j] = temp; s[i][j] = k; } } } } System.out.println("The lowest compute times:" + m[1][n]); } //输出A[i:j]的最优计算次序 public static void traceback(int[][] s, int i, int j) { if (i == j) { System.out.print("A" + i); } if (i < j) { System.out.print("("); traceback(s,i,s[i][j]); traceback(s, s[i][j] + 1, j); System.out.print(")"); } } //输出矩阵 public static void printMatrix(int[][] m) { for (int i = 1, length = m.length; i < length; i++) { System.out.println(); for (int j = 1, l = m[i].length; j < l; j++) { System.out.print(m[i][j] + " "); } } } public static void main(String[] args) { int[] p = {30, 35, 15, 5, 10, 20, 25}; int[][] m = new int[7][7]; int[][] s = new int[7][7]; MatrixChain.matrixChain(p, m, s); //MatrixChain.printMatrix(m); //MatrixChain.printMatrix(s); MatrixChain.traceback(s, 1, 6); } }
共有六个矩阵,维数分别为:
30*35
35*15
15*5
5*`10
10*20
20*25
运行结果为:
The lowest compute times:15125
((A1(A2A3))((A4A5)A6))