<p><strong>0.NAND的操作管理方式</strong>
</p>
<p><strong> </strong>
NAND FLASH的管理方式:以三星FLASH为例,一片Nand
flash为一个设备(device),1 (Device) = xxxx (Blocks),1 (Block) = xxxx
(Pages),1(Page)=528 (Bytes) = 数据块大小(512Bytes) + OOB
块大小(16Bytes,除OOB第六字节外,通常至少把OOB的前3个字节存放Nand Flash硬件ECC码)。</p>
<p> 关于OOB区,是每个Page都有的。Page大小是512字节的NAND每页分配16字节的OOB;如果NAND物理上是2K的Page,则每个Page分配64字节的OOB。如下图:</p>
<p> <img src="http://hi.csdn.net/attachment/201103/25/0_1301039353CC60.gif" alt=""></p>
<p>以HYNIX为例,图中黑体的是实际探测到的NAND,是个2G
bit(256M)的NAND。PgSize是2K字节,PgsPBlk表示每个BLOCK包含64页,那么每个BLOCK占用的字节数是
64X2K=128K字节;该NAND包好2048个BLOCK,那么可以算出NAND占用的字节数是2048X128K=256M,与实际相符。需要注
意的是SprSize就是OOB大小,也恰好是2K页所用的64字节。</p>
<p><strong>1.为什么会出现坏块<br></strong>
由于NAND Flash的工艺不能保证NAND的Memory
Array在其生命周期中保持性能的可靠,因此,在NAND的生产中及使用过程中会产生坏块。坏块的特性是:当编程/擦除这个块时,会造成Page
Program和Block Erase操作时的错误,相应地反映到Status Register的相应位。</p>
<p><strong>2.坏块的分类<br></strong>
总体上,坏块可以分为两大类:(1)固有坏块:这是生产过程中产生的坏块,一般芯片原厂都会在出厂时都会将每个坏块第一个page的spare area的第6个byte标记为<span style="color: #000000;">不等于0xff的</span>
值。(2)使用坏块:这是在NAND Flash使用过程中,<span style="color: #000000;">如果Block Erase或者Page Program错误,就可以简单地将这个块作为坏块来处理,这个时候需要把坏块标记起来。为了和固有坏块信息保持一致,将新发现的坏块的第一个page的 spare area的第6个Byte标记为非0xff的值。</span>
</p>
<p><span style="color: #ff0000;"><span style="color: #000000;"><strong>3.坏块管理<br></strong>
根据上面的这些叙述,可以了解NAND Flash出厂时在spare area中已经反映出了坏块信息,因此,</span>
<span style="color: #000000;">如果在擦除一个块之前,一定要先check一下第一页的spare area的第6个byte是否是0xff,如果是就证明这是一个好块,可以擦除;如果是非0xff,那么就不能擦除,以免将坏块标记擦掉。</span>
<span style="color: #000000;"><span style="color: #000000;">当然,这样处理可能会犯一个错误―――“错杀伪坏块”,因为在芯片操作过程中可能由于</span>
电压不稳定等偶然因素会造成NAND操作的错误。但是,为了数据的可靠性及软件设计的简单化,还是需要遵照这个标准。</span>
</span>
</p>
<p><span style="color: #ff0000;"><span style="color: #000000;">
可以用BBT:bad block
table,即坏块表来进行管理。各家对nand的坏块管理方法都有差异。比如专门用nand做存储的,会把bbt放到block0,因为第0块一定是好
的块。但是如果nand本身被用来boot,那么第0块就要存放程序,不能放bbt了。</span>
</span>
<span style="color: #ff0000;"><span style="color: #000000;">有的把bbt放到最后一块,当然,这一块坚决不能为坏块。</span>
</span>
<span style="color: #ff0000;"><span style="color: #000000;">bbt的大小跟nand大小有关,nand越大,需要的bbt也就越大。</span>
</span>
</p>
<p><span style="color: #ff0000;"><span style="color: #000000;"> <strong>需要注意的是:OOB是每个页都有的数据,里面存的有ECC(当然不仅仅);而BBT是一个FLASH才有一个;针对每个BLOCK的坏块识别则是该块第一页spare area的第六个字节。</strong>
<br><strong>4.坏块纠正</strong>
</span>
</span>
</p>
<p><span style="color: #003300;"><span style="color: #000000;"> ECC:</span>
</span>
<span style="color: #000000;">NAND
Flash出错的时候一般不会造成整个Block或是Page不能读取或是全部出错,而是整个Page(例如512Bytes)中只有一个或几个bit出
错。一般使用一种比较专用的校验——ECC。ECC能纠正单比特错误和检测双比特错误,而且计算速度很快,但对1比特以上的错误无法纠正,对2比特以上的
错误不保证能检测。<br>
ECC一般每256字节原始数据生成3字节ECC校验数据,这三字节共24比特分成两部分:6比特的列校验和16比特的行校验,多余的两个比特置1。(512生成两组ECC,共6字节)<br>
当往NAND Flash的page中写入数据的时候,每256字节我们生成一个ECC校验和,称之为原ECC校验和,保存到PAGE的<strong>OOB</strong>
(out-
of-band)数据区中。其位置就是eccpos[]。校验的时候,根据上述ECC生成原理不难推断:将从OOB区中读出的原ECC校验和新ECC校验
和按位异或,若结果为0,则表示不存在错(或是出现了ECC无法检测的错误);若3个字节异或结果中存在11个比特位为1,表示存在一个比特错误,且可纠
正;若3个字节异或结果中只存在1个比特位为1,表示OOB区出错;其他情况均表示出现了无法纠正的错误。 <br></span>
<span style="color: #000000;"><strong>5.补充<br></strong>
(1)需要对前面由于Page
Program错误发现的坏块进行一下特别说明。如果在对一个块的某个page进行编程的时候发生了错误就要把这个块标记为坏块,首先就要把块里其他好的
面的内容备份到另外一个空的好块里面,然后,把这个块标记为坏块。当然,这可能会犯“错杀”之误,一个补救的办法,就是在进行完块备份之后,再将这个坏块
擦除一遍,如果Block Erase发生错误,那就证明这个块是个真正的坏块,那就毫不犹豫地将它打个“戳”吧!<br>
(2)可能有人会问,为什么要使用每个块第一页的spare area的第六个byte作为坏块标记。这是NAND Flash生产商的默认约定,你可以看到Samsung,Toshiba,STMicroelectronics都是使用这个Byte作为坏块标记的。</span>
</p>
<p>
<span style="color: #ff0000;"><span style="color: #000000;"><span style="color: #000000;"> (3)为什么好块用0xff来标记?因为Nand Flash的擦除即是将相应块的位全部变为1,写操作时只能把芯片每一位(bit)只能从1变为0,而不能从0变为1。0XFF这个值就是标识擦除成功,是好块。</span>
</span>
</span>
</p>
<p></p>
<p></p>
<p></p>
<p></p>
<p></p>
<p></p>
<p></p>
<p><span style="color: #ff0000;"><span style="color: #000000;"><span style="color: #000000;">====================================================</span>
</span>
</span>
</p>
<p></p>
<p></p>
<p><textarea cols="50" rows="15" name="code" class="c-sharp">bbt坏块管理
日月 发表于 - 2010-3-2 9:59:00
2
推荐
前面看到在nand_scan()函数的最后将会跳至scan_bbt()函数,这个函数在nand_scan里面有定义:
2415 if (!this->scan_bbt)
2416 this->scan_bbt = nand_default_bbt;
nand_default_bbt()位于Nand_bbt.c文件中。
1047 /**
* nand_default_bbt - [NAND Interface] Select a default bad block table for the device
* @mtd: MTD device structure
*
* This selects the default bad block table
* support for the device and calls the nand_scan_bbt
**/
int nand_default_bbt (struct mtd_info *mtd)
{
struct nand_chip *this = mtd->priv;
这个函数的作用是建立默认的坏块表。
1059 /* Default for AG-AND. We must use a flash based
* bad block table as the devices have factory marked
* _good_ blocks. Erasing those blocks leads to loss
* of the good / bad information, so we _must_ store
* this information in a good / bad table during
* startup
*/
if (this->options & NAND_IS_AND) {
/* Use the default pattern deors */
if (!this->bbt_td) {
this->bbt_td = &bbt_main_descr;
this->bbt_md = &bbt_mirror_descr;
}
this->options |= NAND_USE_FLASH_BBT;
return nand_scan_bbt (mtd, &agand_flashbased);
}
如果Flash的类型是AG-AND(这种Flash类型比较特殊,既不是MLC又不是SLC,因此不去深究了,而且好像瑞萨要把它淘汰掉),需要使用默认的模式描述符,最后再进入nand_scan_bbt()函数。
1078 /* Is a flash based bad block table requested ? */
if (this->options & NAND_USE_FLASH_BBT) {
/* Use the default pattern deors */
if (!this->bbt_td) {
this->bbt_td = &bbt_main_descr;
this->bbt_md = &bbt_mirror_descr;
}
if (!this->badblock_pattern) {
this->badblock_pattern = (mtd->oobblock > 512) ?
&largepage_flashbased : &smallpage_flashbased;
}
} else {
this->bbt_td = NULL;
this->bbt_md = NULL;
if (!this->badblock_pattern) {
this->badblock_pattern = (mtd->oobblock > 512) ?
&largepage_memorybased : &smallpage_memorybased;
}
}
return nand_scan_bbt (mtd, this->badblock_pattern);
如果Flash芯片需要使用坏块表,对于1208芯片来说是使用smallpage_memorybased。
985 static struct nand_bbt_descr smallpage_memorybased = {
.options = NAND_BBT_SCAN2NDPAGE,
.offs = 5,
.len = 1,
.pattern = scan_ff_pattern
};
暂时没看到如何使用这些赋值,先放着。后面检测坏块时用得着。
1099 return nand_scan_bbt (mtd, this->badblock_pattern);
最后将badblock_pattern作为参数,调用nand_can_bbt函数。
844 /**
* nand_scan_bbt - [NAND Interface] scan, find, read and maybe create bad block table(s)
* @mtd: MTD device structure
* @bd: deor for the good/bad block search pattern
*
* The checks, if a bad block table(s) is/are already
* available. If not it scans the device for manufacturer
* marked good / bad blocks and writes the bad block table(s) to
* the selected place.
*
* The bad block table memory is allocated here. It must be freed
* by calling the nand_free_bbt .
*
*/
int nand_scan_bbt (struct mtd_info *mtd, struct nand_bbt_descr *bd)
{
检测、寻找、读取甚至建立坏块表。函数检测是否已经存在一张坏块表,否则建立一张。坏块表的内存分配也在这个函数中。
860 struct nand_chip *this = mtd->priv;
int len, res = 0;
uint8_t *buf;
struct nand_bbt_descr *td = this->bbt_td;
struct nand_bbt_descr *md = this->bbt_md;
len = mtd->size >> (this->bbt_erase_shift + 2);
/* Allocate memory (2bit per block) */
this->bbt = kmalloc (len, GFP_KERNEL);
if (!this->bbt) {
printk (KERN_ERR "nand_scan_bbt: Out of memory/n");
return -ENOMEM;
}
/* Clear the memory bad block table */
memset (this->bbt, 0x00, len);
一些赋值、变量声明、内存分配,每个block分配2bit的空间。1208有4096个block,应该分配4096*2bit的空间。
877 /* If no primary table decriptor is given, scan the device
* to build a memory based bad block table
*/
if (!td) {
if ((res = nand_memory_bbt(mtd, bd))) {
printk (KERN_ERR "nand_bbt: Can't scan flash and build the RAM-based BBT/n");
kfree (this->bbt);
this->bbt = NULL;
}
return res;
}
如果没有提供ptd,就扫描设备并建立一张。这里调用了nand_memory_bbt()这个内联函数。
653 /**
* nand_memory_bbt - [GENERIC] create a memory based bad block table
* @mtd: MTD device structure
* @bd: deor for the good/bad block search pattern
*
* The creates a memory based bbt by scanning the device
* for manufacturer / software marked good / bad blocks
*/
static inline int nand_memory_bbt (struct mtd_info *mtd, struct nand_bbt_descr *bd)
{
struct nand_chip *this = mtd->priv;
bd->options &= ~NAND_BBT_SCANEMPTY;
return create_bbt (mtd, this->data_buf, bd, -1);
}
函数的作用是建立一张基于memory的坏块表。
将操作符的NAND_BBT_SCANEMPTY清除,并继续调用creat_bbt()函数。
271 /**
* create_bbt - [GENERIC] Create a bad block table by scanning the device
* @mtd: MTD device structure
* @buf: temporary buffer
* @bd: deor for the good/bad block search pattern
* @chip: create the table for a specific chip, -1 read all chips.
* Applies only if NAND_BBT_PERCHIP option is set
*
* Create a bad block table by scanning the device
* for the given good/bad block identify pattern
*/
static int create_bbt (struct mtd_info *mtd, uint8_t *buf, struct nand_bbt_descr *bd, int chip)
{
真正的建立坏块表函数。chip参数是-1表示读取所有的芯片。
284 struct nand_chip *this = mtd->priv;
int i, j, numblocks, len, scanlen;
int startblock;
loff_t from;
size_t readlen, ooblen;
printk (KERN_INFO "Scanning device for bad blocks/n");
一些变量声明,开机时那句话就是在这儿打印出来的。
292 if (bd->options & NAND_BBT_SCANALLPAGES)
len = 1 << (this->bbt_erase_shift - this->page_shift);
else {
if (bd->options & NAND_BBT_SCAN2NDPAGE)
len = 2;
else
len = 1;
}
在前面我们定义了smallpage_memorybased这个结构体,现在里面NAND_BBT_SCANALLPAGES的终于用上了,对于1208芯片来说,len=2。
304 if (!(bd->options & NAND_BBT_SCANEMPTY)) {
/* We need only read few bytes from the OOB area */
scanlen = ooblen = 0;
readlen = bd->len;
} else {
/* Full page content should be read */
scanlen = mtd->oobblock + mtd->oobsize;
readlen = len * mtd->oobblock;
ooblen = len * mtd->oobsize;
}
前面已经将NAND_BBT_SCANEMPTY清除了,这里肯定执行else的内容。需要将一页内容都读取出来。
316 if (chip == -1) {
/* Note that numblocks is 2 * (real numblocks) here, see i+=2 below as it
* makes shifting and masking less painful */
numblocks = mtd->size >> (this->bbt_erase_shift - 1);
startblock = 0;
from = 0;
} else {
if (chip >= this->numchips) {
printk (KERN_WARNING "create_bbt(): chipnr (%d) > available chips (%d)/n",
chip + 1, this->numchips);
return -EINVAL;
}
numblocks = this->chipsize >> (this->bbt_erase_shift - 1);
startblock = chip * numblocks;
numblocks += startblock;
from = startblock << (this->bbt_erase_shift - 1);
}
前面提到chip为-1,实际上我们只有一颗芯片,numblocks这儿是4096*2。
335 for (i = startblock; i < numblocks;) {
int ret;
if (bd->options & NAND_BBT_SCANEMPTY)
if ((ret = nand_read_raw (mtd, buf, from, readlen, ooblen)))
return ret;
for (j = 0; j < len; j++) {
if (!(bd->options & NAND_BBT_SCANEMPTY)) {
size_t retlen;
/* Read the full oob until read_oob is fixed to
* handle single byte reads for 16 bit buswidth */
ret = mtd->read_oob(mtd, from + j * mtd->oobblock,
mtd->oobsize, &retlen, buf);
if (ret)
return ret;
if (check_short_pattern (buf, bd)) {
this->bbt[i >> 3] |= 0x03 << (i & 0x6);
printk (KERN_WARNING "Bad eraseblock %d at 0x%08x/n",
i >> 1, (unsigned int) from);
break;
}
} else {
if (check_pattern (&buf[j * scanlen], scanlen, mtd->oobblock, bd)) {
this->bbt[i >> 3] |= 0x03 << (i & 0x6);
printk (KERN_WARNING "Bad eraseblock %d at 0x%08x/n",
i >> 1, (unsigned int) from);
break;
}
}
}
i += 2;
from += (1 << this->bbt_erase_shift);
}
return 0;
检测这4096个block,刚开始的nand_read_raw肯定不会执行。len是2,在j循环要循环2次。
每次循环真正要做的事情是下面的内容:
ret = mtd->read_oob(mtd, from + j * mtd->oobblock, mtd->oobsize, &retlen, buf);
read_oob()函数在nand_scan()里被指向nand_read_oob(),这个函数在Nand_base.c文件中,看来得回Nand_base.c看看了。
1397 /**
* nand_read_oob - [MTD Interface] NAND read out-of-band
* @mtd: MTD device structure
* @from: offset to read from
* @len: number of bytes to read
* @retlen: pointer to variable to store the number of read bytes
* @buf: the databuffer to put data
*
* NAND read out-of-band data from the spare area
*/
static int nand_read_oob (struct mtd_info *mtd, loff_t from, size_t len, size_t * retlen, u_char * buf)
{
才发现oob全称是out-of-band, from是偏移量,len是读取的长度,retlen是存储指针。
1409 int i, col, page, chipnr;
struct nand_chip *this = mtd->priv;
int blockcheck = (1 << (this->phys_erase_shift - this->page_shift)) - 1;
DEBUG (MTD_DEBUG_LEVEL3, "nand_read_oob: from = 0x%08x, len = %i/n", (unsigned int) from, (int) len);
/* Shift to get page */
page = (int)(from >> this->page_shift);
chipnr = (int)(from >> this->chip_shift);
/* Mask to get column */
col = from & (mtd->oobsize - 1);
/* Initialize return length value */
*retlen = 0;
一些初始化,blockcheck对于1208应该是(1<<(0xe-0x9)-1)=31。然后通过偏移量计算出要读取oob区的page,chipnr和col。
1425 /* Do not allow reads past end of device */
if ((from + len) > mtd->size) {
DEBUG (MTD_DEBUG_LEVEL0, "nand_read_oob: Attempt read beyond end of device/n");
*retlen = 0;
return -EINVAL;
}
/* Grab the lock and see if the device is available */
nand_get_device (this, mtd , FL_READING);
/* Select the NAND device */
this->select_chip(mtd, chipnr);
/* Send the read command */
this->cmdfunc (mtd, NAND_CMD_READOOB, col, page & this->pagemask);
不允许非法的读取,获取芯片控制权,发送读取OOB命令,这儿会调用具体硬件驱动中相关的Nand控制函数。
1442 /*
* Read the data, if we read more than one page
* oob data, let the device transfer the data !
*/
i = 0;
while (i < len) {
int thislen = mtd->oobsize - col;
thislen = min_t(int, thislen, len);
this->read_buf(mtd, &buf[i], thislen);
i += thislen;
/* Read more ? */
if (i < len) {
page++;
col = 0;
/* Check, if we cross a chip boundary */
if (!(page & this->pagemask)) {
chipnr++;
this->select_chip(mtd, -1);
this->select_chip(mtd, chipnr);
}
/* Apply delay or wait for ready/busy pin
* Do this before the AUTOINCR check, so no problems
* arise if a chip which does auto increment
* is marked as NOAUTOINCR by the board driver.
*/
if (!this->dev_ready)
udelay (this->chip_delay);
else
nand_wait_ready(mtd);
/* Check, if the chip supports auto page increment
* or if we have hit a block boundary.
*/
if (!NAND_CANAUTOINCR(this) || !(page & blockcheck)) {
/* For subsequent page reads set offset to 0 */
this->cmdfunc (mtd, NAND_CMD_READOOB, 0x0, page & this->pagemask);
}
}
}
/* Deselect and wake up anyone waiting on the device */
nand_release_device(mtd);
/* Return happy */
*retlen = len;
return 0;
开始读取数据,while循环只要获取到oob区大小的数据即可。注意,read_buf才是最底层的读写Nand的函数,在我们的驱动中根据参数可以实现读取528byte全部内容,或者16byte的oob区。
如果一次没读完,就要继续再读,根据我们实际使用经验好像没出现过这种问题。
最后Return Happy~回到Nand_bbt.c的creat_bbt()函数,348行,好像都快忘记我们还没出creat_bbt()函数呢,我再把他贴一遍吧:
346 /* Read the full oob until read_oob is fixed to
* handle single byte reads for 16 bit buswidth */
ret = mtd->read_oob(mtd, from + j * mtd->oobblock,
mtd->oobsize, &retlen, buf);
if (ret)
return ret;
if (check_short_pattern (buf, bd)) {
this->bbt[i >> 3] |= 0x03 << (i & 0x6);
printk (KERN_WARNING "Bad eraseblock %d at 0x%08x/n",
i >> 1, (unsigned int) from);
break;
}
} else {
if (check_pattern (&buf[j * scanlen], scanlen, mtd->oobblock, bd)) {
this->bbt[i >> 3] |= 0x03 << (i & 0x6);
printk (KERN_WARNING "Bad eraseblock %d at 0x%08x/n",
i >> 1, (unsigned int) from);
break;
}
}
}
i += 2;
from += (1 << this->bbt_erase_shift);
}
return 0;
}
刚刚如果不是Ruturn Happy,下面的352行就会返回错误了。接着会调用check_short_pattern()这个函数。
113 /**
* check_short_pattern - [GENERIC] check if a pattern is in the buffer
* @buf: the buffer to search
* @td: search pattern deor
*
* Check for a pattern at the given place. Used to search bad block
* tables and good / bad block identifiers. Same as check_pattern, but
* no optional empty check
*
*/
static int check_short_pattern (uint8_t *buf, struct nand_bbt_descr *td)
{
int i;
uint8_t *p = buf;
/* Compare the pattern */
for (i = 0; i < td->len; i++) {
if (p[td->offs + i] != td->pattern[i])
return -1;
}
return 0;
}
检查读到的oob区是不是坏块就靠这个函数了。前面放了好久的struct nand_bbt_descr smallpage_memorybased终于用上了,挨个对比,有一个不一样直接返回-1,坏块就这样产生了。下面会将坏块的位置打印出来,并且将坏块记录在bbt表里面,在nand_scan_bbt()函数的开始我们就为bbt申请了空间。
this->bbt[i >> 3] |= 0x03 << (i & 0x6);
为啥要右移3bit呢?首先i要右移1bit,因为前面乘以了2。由于没个block占用2bit的空间,一个char变量8bit,所以还再要右移2bit吧。
下面的check_pattern()函数调用不到的。
依次检测完所有block,creat_bbt()函数也顺利返回。
这样nand_memory_bbt()函数也正确返回。
接着是nand_scan_bbt()同样顺利结束。
最后nand_default_bbt()完成。
整个nand_scan()的工作终于完成咯,好长。</textarea></p>
<p></p>
<p></p>
<p></p>
<p>===============================================================</p>
<p></p>
<p></p>
<p></p>
<p></p>
<p></p>
<div class="BlogTitle">
<h1>MTD的坏块管理(一)-快速了解MTD的坏块管理</h1>
<div class="BlogStat">
<span class="admin">
<em id="p_attention_count">1</em>
人收藏此文章,
<span id="attention_it">
<a>收藏此文章</a>
</span>
</span>
发表于2个月前 ,
已有<strong>65</strong>
次阅读
共<strong><a href="http://my.oschina.net/u/130864/blog/15328#comments">0</a>
</strong>
个评论
<strong>1</strong>
人收藏此文章
</div>
</div>
<p>
<span style="color: #64451d; font-family: Verdana; font-size: 12px;">由
于NAND Flash的现有工艺不能保证NAND的Memory
Array在其生命周期中保持性能的可靠,因此在NAND芯片出厂的时候,厂家只能保证block
0不是坏块,对于其它block,则均有可能存在坏块,而且NAND芯片在使用的过程中也很容易产生坏块。因此,我们在读写NAND FLASH
的时候,需要检测坏块,同时还需在NAND驱动中加入坏块管理的功能。</span>
<br><span style="color: #64451d; font-family: Verdana; font-size: 12px;"></span>
<br><span style="color: #64451d; font-family: Verdana; font-size: 12px;">NAND驱动在加载的时候,会调用nand_scan函数,对bad block table的搜寻,建立等操作就是在这个函数的第二部分,即nand_scan_tail函数中完成的。</span>
<br><br><span style="color: #64451d; font-family: Verdana; font-size: 12px;">在
nand_scan_tail函数中,会首先检查struct
nand_chip结构体中的options成员变量是否被赋上了NAND_SKIP_BBTSCAN,这个宏表示跳过扫描bbt。所以,只有当你的
driver中没有为options定义NAND_SKIP_BBTSCAN时,MTD才会继续与bbt相关工作,即调用struct
nand_chip中的scan_bbt函数指针所指向的函数,在MTD中,这个函数指针指向nand_default_bbt函数。</span>
<br><br><span style="color: #64451d; font-family: Verdana; font-size: 12px;">bbt有两种存储
方式,一种是把bbt存储在NAND芯片中,另一种是把bbt存储在内存中。对于前者,好处是驱动加载更快,因为它只会在第一次加载NAND驱动时扫描整
个NAND芯片,然后在NAND芯片的某个block中建立bbt,坏处是需要至少消耗NAND芯片一个block的存储容量;而对于后者,好处是不会耗
用NAND芯片的容量,坏处是驱动加载稍慢,因为存储在内存中的bbt每次断电后都不会保存,所以在每次加载NAND驱动时,都会扫描整个NAND芯片,
以便建立bbt。</span>
<br><br><span style="color: #64451d; font-family: Verdana; font-size: 12px;">如果你系统中的NAND芯片容量不是太大的话,我建议还是把bbt存储在内存中比较好,因为根据本人的使用经验,对一块容量为2G bits的NAND芯片,分别采用这两种存储方式的驱动的加载速度相差不大,甚至几乎感觉不出来。</span>
<br><br><span style="color: #64451d; font-family: Verdana; font-size: 12px;">建立bbt后,以后在做擦除等操作时,就不用每次都去验证当前block是否是个坏块了,因为从bbt中就可以得到这个信息。另外,若在读写等操作时,发现产生了新的坏块,那么除了标志这个block是个坏块外,也还需更新bbt。</span>
<br><br><span style="color: #64451d; font-family: Verdana; font-size: 12px;">接下来,介绍一下MTD是如何查找或者建立bbt的。</span>
<br><br><span style="color: #64451d; font-family: Verdana; font-size: 12px;">1、MTD中与bbt相关的结构体</span>
<br><br><span style="color: #64451d; font-family: Verdana; font-size: 12px;">struct
nand_chip中的scan_bbt函数指针所指向的函数,即nand_default_bbt函数会首先检查struct
nand_chip中options成员变量,如果当前NAND芯片是AG-AND类型的,会强制把bbt存储在NAND芯片中,因为这种类型的NAND
芯片中含有厂家标注的“好块”信息,擦除这些block时会导致丢失坏块信息。</span>
<br><br><span style="color: #64451d; font-family: Verdana; font-size: 12px;">接着
nand_default_bbt函数会再次检查struct
nand_chip中options成员变量,根据它是否定义了NAND_USE_FLASH_BBT,而为struct
nand_chip中3个与bbt相关的结构体附上不同的值,然后再统一调用nand_scan_bbt函数,nand_scan_bbt函数会那3个结
构体的不同的值做不同的动作,或者把bbt存储在NAND芯片中,或者把bbt存储在内存中。</span></p>
<p><span style="color: #64451d; font-family: Verdana; font-size: 12px;">在struct nand_chip中与bbt相关的结构体如下:</span>
</p>
<p><span style="color: #64451d; font-family: Verdana; font-size: 12px;">structnand_chip{</span>
<br><span style="color: #64451d; font-family: Verdana; font-size: 12px;">……</span>
<br><span style="color: #64451d; font-family: Verdana; font-size: 12px;">uint8_t*bbt</span>
<br><span style="color: #64451d; font-family: Verdana; font-size: 12px;">structnand_bbt_descr*bbt_td;</span>
<br><span style="color: #64451d; font-family: Verdana; font-size: 12px;">structnand_bbt_descr*bbt_md;</span>
<br><span style="color: #64451d; font-family: Verdana; font-size: 12px;">structnand_bbt_descr*badblock_pattern;</span>
<br><span style="color: #64451d; font-family: Verdana; font-size: 12px;">……</span>
</p>
<p><span style="color: #64451d; font-family: Verdana; font-size: 12px;">};</span>
</p>
<p><span style="color: #64451d; font-family: Verdana; font-size: 12px;">bbt指向
一块在nand_default_bbt函数中分配的内存,若options中没有定义NAND_USE_FLASH_BBT,MTD就直接在bbt指向
的内存中建立bbt,否则就会先从NAND芯片中查找bbt是否存在,若存在,就把bbt的内容读出来并保存到bbt指向的内存中,若不存在,则在bbt
指向的内存中建立bbt,最后把它写入到NAND芯片中去。</span>
<br><br><span style="color: #64451d; font-family: Verdana; font-size: 12px;">bbt_td、bbt_md和badblock_pattern就是在nand_default_bbt函数中赋值的3个结构体。它们虽然是相同的结构体类型,但却有不同的作用和含义。</span>
<br><span style="color: #64451d; font-family: Verdana; font-size: 12px;">其
中bbt_td和bbt_md是主bbt和镜像bbt的描述符(镜像bbt主要用来对bbt的update和备份),它们只在把bbt存储在NAND芯片
的情况下使用,用来从NAND芯片中查找bbt。若bbt存储在内存中,bbt_td和bbt_md将会被赋值为NULL。</span>
<br><br><span style="color: #64451d; font-family: Verdana; font-size: 12px;">badblock_pattern就是坏块信息的pattern,其中定义了坏块信息在oob中的存储位置,以及内容(即用什么值表示这个block是个坏块)。</span>
<br><br><span style="color: #64451d; font-family: Verdana; font-size: 12px;">通
常用1或2个字节来标志一个block是否为坏块,这1或2个字节就是坏块信息,如果这1或2个字节的内容是0xff,那就说明这个block是好的,否
则就是坏块。对于坏块信息在NAND芯片中的存储位置,small page(每页512 Byte)和big page(每页2048
Byte)的两种NAND芯片不尽相同。一般来说,small
page的NAND芯片,坏块信息存储在每个block的第一个page的oob的第六个字节中,而big
page的NAND芯片,坏块信息存储在每个block的第一个page的oob的第1和第2个字节中。</span>
<br><br><span style="color: #64451d; font-family: Verdana; font-size: 12px;">我
不能确定是否所有的NAND芯片都是如此布局,但应该绝大多数NAND芯片是这样的,不过,即使某种NAND芯片的坏块信息不是这样的存储方式也没关系,
因为我们可以在badblock_pattern中自己指定坏块信息的存储位置,以及用什么值来标志坏块(其实这个值表示的应该是“好块”,因为MTD会
把从oob中坏块信息存储位置读出的内容与这个值做比较,若相等,则表示是个“好块”,否则就是坏块)。</span></p>
<p><span style="color: #64451d; font-family: Verdana; font-size: 12px;">bbt_td、bbt_md和badblock_pattern的结构体类型定义如下:</span>
</p>
<p><span style="color: #64451d; font-family: Verdana; font-size: 12px;">structnand_bbt_descr{</span>
<br><span style="color: #64451d; font-family: Verdana; font-size: 12px;">intoptions;</span>
<br><span style="color: #64451d; font-family: Verdana; font-size: 12px;">intpages[NAND_MAX_CHIPS];</span>
<br><span style="color: #64451d; font-family: Verdana; font-size: 12px;">intoffs;</span>
<br><span style="color: #64451d; font-family: Verdana; font-size: 12px;">intveroffs;</span>
<br><span style="color: #64451d; font-family: Verdana; font-size: 12px;">uint8_tversion[NAND_MAX_CHIPS];</span>
<br><span style="color: #64451d; font-family: Verdana; font-size: 12px;">intlen;</span>
<br><span style="color: #64451d; font-family: Verdana; font-size: 12px;">intmaxblocks;</span>
<br><span style="color: #64451d; font-family: Verdana; font-size: 12px;">intreserved_block_code;</span>
<br><span style="color: #64451d; font-family: Verdana; font-size: 12px;">uint8_t*pattern;</span>
</p>
<p><span style="color: #64451d; font-family: Verdana; font-size: 12px;">};</span>
</p>
<p><span style="color: #64451d; font-family: Verdana; font-size: 12px;">options:bad block table或者bad block的选项,可用的选择以及各选项具体表示什么含义,可以参考<linux/mtd/nand.h>。</span>
<br><br><span style="color: #64451d; font-family: Verdana; font-size: 12px;">pages:bbt
专用。在查找bbt的时候,若找到了bbt,就把bbt所在的page号保存在这个成员变量中。若没找到bbt,就会把新建立的bbt的保存位置赋值给
它。因为系统中可能会有多个NAND芯片,我们可以为每一片NAND芯片建立一个bbt,也可以只在其中一片NAND芯片中建立唯一的一个bbt,所以这
里的pages是个维数为NAND_MAX_CHIPS的数值,用来保存每一片NAND芯片的bbt位置。当然,若只建立了一个bbt,那么就只使用
pages[0]。</span>
<br><br><span style="color: #64451d; font-family: Verdana; font-size: 12px;">offs、len和pattern:MTD会从oob的offs中读出len长度的内容,然后与pattern指针指向的内容做比较,若相等,则表示找到了bbt,或者表示这个block是好的。</span>
<br><br><span style="color: #64451d; font-family: Verdana; font-size: 12px;">veroffs和version:bbt专用。MTD会从oob的veroffs中读出一个字节的内容,作为bbt的版本值保存在version中。</span>
<br><br><span style="color: #64451d; font-family: Verdana; font-size: 12px;">maxblocks:bbt专用。MTD在查找bbt的时候,不会查找NAND芯片中所有的block,而是最多查找maxblocks个block。</span>
<br><br><span style="color: #64451d; font-family: Verdana; font-size: 12px;">2、bbt存储在内存中时的工作流程</span>
<br><br><span style="color: #64451d; font-family: Verdana; font-size: 12px;">前文说过,不管bbt是存储在NAND芯片中,还是存储在内存中,nand_default_bbt函数都会调用nand_scan_bbt函数。</span>
<br><br><span style="color: #64451d; font-family: Verdana; font-size: 12px;">nand_scan_bbt函数会判断bbt_td的值,若是NULL,则表示bbt存储在内存中,它就在调用nand_memory_bbt函数后返回。nand_memory_bbt函数的主要工作就是在内存中建立bbt,其实就是调用了create_bbt函数。</span>
<br><br><span style="color: #64451d; font-family: Verdana; font-size: 12px;">create_bbt
函数的工作方式很简单,就是扫描NAND芯片所有的block,读取每个block中第一个page的oob内容,然后根据oob中的坏块信息建立起
bbt,可以参见上节关于struct nand_bbt_descr中的offs、len和pattern成员变量的解释。</span>
<br><br><span style="color: #64451d; font-family: Verdana; font-size: 12px;">3、bbt存储在NAND芯片时的工作流程</span>
<br><br><span style="color: #64451d; font-family: Verdana; font-size: 12px;">相对于把bbt存储在内存中,这种方式的工作流程稍显复杂一点。</span>
<br><br><span style="color: #64451d; font-family: Verdana; font-size: 12px;">nand_scan_bbt函数首先从NAND芯片中读取bbt的内容,它读取的方式分为两种:</span>
<br><br><span style="color: #64451d; font-family: Verdana; font-size: 12px;">其
一是调用read_abs_bbts函数直接从给定的page地址读取,那么这个page地址在什么时候指定呢?就是在你的NAND
driver中指定。前文说过,在struct
nand_chip结构体中有两个成员变量,分别是bbt_td和bbt_md,MTD为它们附上了default的值,但是你也可以根据你的需要为它们
附上你自己定义的值。假如你为bbt_td和bbt_md的options成员变量定义了NAND_BBT_ABSPAGE,同时又把你的bbt所在的
page地址保存在bbt_td和bbt_md的pages成员变量中,MTD就可以直接在这个page地址中读取bbt了。值得一提的是,在实际使用时
一般不这么干,因为你不能保证你保存bbt的那个block就永远不会坏,而且这样也不灵活;</span>
</p>
<p><br><span style="color: #64451d; font-family: Verdana; font-size: 12px;">其二是调用那个search_read_bbts函数试着在NAND芯片的maxblocks(请见上文关于struct nand_bbt_descr中maxblocks的说明)个block中查找bbt是否存在,若找到,就可以读取bbt了。</span>
<br><br><span style="color: #64451d; font-family: Verdana; font-size: 12px;">MTD
查找bbt的过程为:如果你在bbt_td和bbt_md的options 成员变量中定义了
NAND_BBT_LASTBLOCK,那么MTD就会从NAND芯片的最后一个block开始查找(在default情况下,MTD就是这么干的),否
则就从第一个block开始查找。</span>
<br><br><span style="color: #64451d; font-family: Verdana; font-size: 12px;">与
查找oob中的坏块信息时类似,MTD会从所查找block的第一个page的oob中读取内容,然后与bbt_td或bbt_md中patter指向的
内容做比较,若相等,则表示找到了bbt,否则就继续查找下一个block。顺利的情况下,只需查找一个block中就可以找到bbt,否则MTD最多会
查找maxblocks个block。</span>
<br><span style="color: #64451d; font-family: Verdana; font-size: 12px;">若找到了bbt,就把该bbt所在的page地址保存到bbt_td或bbt_md的pages成员变量中,否则pages的值为-1。</span>
<br><br><span style="color: #64451d; font-family: Verdana; font-size: 12px;">如果系统中有多片NAND芯片,并且为每一片NAND芯片都建立一个bbt,那么就会在每片NAND芯片上重复以上过程。</span>
<br><br><span style="color: #64451d; font-family: Verdana; font-size: 12px;">接
着,nand_scan_bbt函数会调用check_create函数,该函数会判断是否找到了bbt,其实就是判断bbt_td或者bbt_md中
pages成员变量的值是否有效。若找到了bbt,就会把bbt从NAND芯片中读取出来,并保存到struct
nand_chip中bbt指针指向的内存中;若没找到,就会调用create_bbt函数建立bbt(与bbt存储在内存中时情况一样),同时把bbt
写入到NAND芯片中去。</span>
</p>
<p></p>
<p></p>
<p><span style="color: #ff0000;"><span style="color: #000000;"><span style="color: #000000;">****</span>
</span>
</span>
<span style="color: #ff0000;"><span style="color: #000000;"><span style="color: #000000;">****</span>
</span>
</span>
<span style="color: #ff0000;"><span style="color: #000000;"><span style="color: #000000;">****</span>
</span>
</span>
<span style="color: #ff0000;"><span style="color: #000000;"><span style="color: #000000;">****</span>
</span>
</span>
<span style="color: #ff0000;"><span style="color: #000000;"><span style="color: #000000;">****</span>
</span>
</span>
<span style="color: #ff0000;"><span style="color: #000000;"><span style="color: #000000;">****</span>
</span>
</span>
<span style="color: #ff0000;"><span style="color: #000000;"><span style="color: #000000;">****</span>
</span>
</span>
<span style="color: #ff0000;"><span style="color: #000000;"><span style="color: #000000;">****</span>
</span>
</span>
<span style="color: #ff0000;"><span style="color: #000000;"><span style="color: #000000;">****</span>
</span>
</span>
<span style="color: #ff0000;"><span style="color: #000000;"><span style="color: #000000;">****</span>
</span>
</span>
<span style="color: #ff0000;"><span style="color: #000000;"><span style="color: #000000;">****</span>
</span>
</span>
<span style="color: #ff0000;"><span style="color: #000000;"><span style="color: #000000;">****</span>
</span>
</span>
<span style="color: #ff0000;"><span style="color: #000000;"><span style="color: #000000;">****</span>
</span>
</span>
<span style="color: #ff0000;"><span style="color: #000000;"><span style="color: #000000;">****</span>
</span>
</span>
<span style="color: #ff0000;"><span style="color: #000000;"><span style="color: #000000;">****</span>
</span>
</span>
<span style="color: #ff0000;"><span style="color: #000000;"><span style="color: #000000;">****</span>
</span>
</span>
<span style="color: #ff0000;"><span style="color: #000000;"><span style="color: #000000;">****</span>
</span>
</span>
<span style="color: #ff0000;"><span style="color: #000000;"><span style="color: #000000;">****</span>
</span>
</span>
<span style="color: #ff0000;"><span style="color: #000000;"><span style="color: #000000;">****</span>
</span>
</span>
<span style="color: #ff0000;"><span style="color: #000000;"><span style="color: #000000;">****</span>
</span>
</span>
<span style="color: #ff0000;"><span style="color: #000000;"><span style="color: #000000;">****</span>
</span>
</span>
</p>
<p></p>
<div class="BlogTitle">
<h1>MTD坏块管理(二)-内核获取Nandflash的参数过程</h1>
<div class="BlogStat">
<span class="admin">
<em id="p_attention_count">1</em>
人收藏此文章,
<span id="attention_it">
<a>收藏此文章</a>
</span>
</span>
发表于2个月前 ,
已有<strong>133</strong>
次阅读
共<strong><a href="http://my.oschina.net/u/130864/blog/15330#comments">0</a>
</strong>
个评论
<strong>1</strong>
人收藏此文章
</div>
</div>
<p>
<span class="Apple-style-span" style="font-family: verdana,sans-serif; font-size: 17px; line-height: 25px;">
<p style="padding: 0px; margin: 1em 0px 0.5em;"><span style="color: #64451d; font-family: Verdana; font-size: 12px;">MTD坏块管理机制中,起着核心作用的数据结构是nand_chip,在此以TCC8900-Linux中MTD的坏块管理为例作一次介绍。</span>
</p>
<p><span style="color: #64451d; font-family: Verdana; font-size: 12px;">MTD在Linux内核中同样以模块的形式被启用,TCC_MTD_IO_Init()函数完成了nand_chip初始化、mtd_info初始注册,</span>
</p>
<p><span style="color: #64451d; font-family: Verdana; font-size: 12px;">坏块表的管理机制建立等工作。</span>
</p>
<p><span style="color: #64451d; font-family: Verdana; font-size: 12px;">nand_chip在TCC_MTD_IO_Init函数中的实例名称是this,mtd_info 的实例名称为TCC_mtd,这里有一个比较巧妙的处理方法:</span>
</p>
<p><span style="color: #64451d; font-family: Verdana; font-size: 12px;">TCC_mtd=kmalloc(sizeof(struct mtd_info)+sizeof(struct nand_chip),GFP_KERNEL);</span>
</p>
<p><span style="color: #64451d; font-family: Verdana; font-size: 12px;">this=(struct nand_chip*)(&TCC_mtd[1]);</span>
</p>
<p><span style="color: #64451d; font-family: Verdana; font-size: 12px;">在以后的操作中,只需得知TCC_mtd即可找到对应的nan_chip实例。</span>
</p>
<p><span style="color: #64451d; font-family: Verdana; font-size: 12px;">获得必要的信息后(包括nand_chip方法的绑定),流程进入nand_scan(TCC_mtd,1).</span>
</p>
<p><span style="color: #64451d; font-family: Verdana; font-size: 12px;">nand_scan(struct mdt_info *mtd, int maxchips);</span>
</p>
<p><span style="color: #64451d; font-family: Verdana; font-size: 12px;">调用nand_scan_ident(mtd,maxchips)和nand_scan_tail(mtd);</span>
</p>
<p><span style="color: #64451d; font-family: Verdana; font-size: 12px;">nand_scan_ident(...)调用了一个很重要的函数:nand_get_flash_type(...)</span>
</p>
<p><span style="color: #64451d; font-family: Verdana; font-size: 12px;">*从nand_get_flash_type(...)函数中可以看出每个nandflash前几个字节所代表的意思都是约定好了的:</span>
</p>
<p><span style="color: #64451d; font-family: Verdana; font-size: 12px;">第一个字节:制造商ID</span>
</p>
<p><span style="color: #64451d; font-family: Verdana; font-size: 12px;">第二个字节:设备ID</span>
</p>
<p><span style="color: #64451d; font-family: Verdana; font-size: 12px;">第三个字节:MLC 数据</span>
</p>
<p><span style="color: #64451d; font-family: Verdana; font-size: 12px;">第四个字节:extid (比较总要)</span>
</p>
<p><span style="color: #64451d; font-family: Verdana; font-size: 12px;">其中设备ID是访问nand_flash_ids表的参照,该表在drivers/mtd/nand/nand_ids.c中定义</span>
</p>
<p><span style="color: #64451d; font-family: Verdana; font-size: 12px;">Linux内核在nand_flash_ids参照表中,通过匹配上述设备ID来查找nandflash的详细信息,</span>
</p>
<p><span style="color: #64451d; font-family: Verdana; font-size: 12px;">nand_flash_ids中的举例如下:</span>
</p>
<p><span style="color: #64451d; font-family: Verdana; font-size: 12px;">struct nand_flash_dev nand_flash_ids[]={</span>
</p>
<p><span style="color: #64451d; font-family: Verdana; font-size: 12px;">......</span>
</p>
<p><span style="color: #64451d; font-family: Verdana; font-size: 12px;">{"NAND 16MiB 1,8V 8-bit", 0x33, 512, 16, 0x4000, 0},</span>
</p>
<p><span style="color: #64451d; font-family: Verdana; font-size: 12px;">{"NAND 16MiB 3,3V 8-bit", 0x73, 512, 16, 0x4000, 0},</span>
</p>
<p><span style="color: #64451d; font-family: Verdana; font-size: 12px;">{"NAND 16MiB 1,8V 16-bit", 0x43, 512, 16, 0x4000, NAND_BUSWIDTH_16},</span>
</p>
<p><span style="color: #64451d; font-family: Verdana; font-size: 12px;">{"NAND 16MiB 3,3V 16-bit", 0x53, 512, 16, 0x4000, NAND_BUSWIDTH_16},</span>
</p>
<p><span style="color: #64451d; font-family: Verdana; font-size: 12px;">......</span>
</p>
<p><span style="color: #64451d; font-family: Verdana; font-size: 12px;">}</span>
</p>
<p><span style="color: #64451d; font-family: Verdana; font-size: 12px;">466 struct nand_flash_dev {</span>
</p>
<p><span style="color: #64451d; font-family: Verdana; font-size: 12px;">467 char *name;</span>
</p>
<p><span style="color: #64451d; font-family: Verdana; font-size: 12px;">468 int id;</span>
</p>
<p><span style="color: #64451d; font-family: Verdana; font-size: 12px;">469 unsigned long pagesize;</span>
</p>
<p><span style="color: #64451d; font-family: Verdana; font-size: 12px;">470 unsigned long chipsize;</span>
</p>
<p><span style="color: #64451d; font-family: Verdana; font-size: 12px;">471 unsigned long erasesize; </span>
</p>
<p><span style="color: #64451d; font-family: Verdana; font-size: 12px;">472 unsigned long options; </span>
</p>
<p><span style="color: #64451d; font-family: Verdana; font-size: 12px;">473 };</span>
</p>
<p><span style="color: #64451d; font-family: Verdana; font-size: 12px;">值得一提的是,MTD子系统会把从nand_flash_ids表中找到的chipsize复制给mtd->size,这在有些应用中显得不合适,</span>
</p>
<p><span style="color: #64451d; font-family: Verdana; font-size: 12px;">在有些方案中,并不是把nandflash的所有存储空间都划分为MTD分区,Telechips的TCC89XX方案就是这样,4G的nandflash</span>
</p>
<p><span style="color: #64451d; font-family: Verdana; font-size: 12px;">上,可以划分任意大小的MTD分区,错误的mtd->size的后果非常严重,造成系统启动慢,整个MTD的坏块管理机制瘫痪等等。</span>
</p>
<p><span style="color: #64451d; font-family: Verdana; font-size: 12px;">随后,nand_get_flash_type通过extid计算出了以下信息:</span>
</p>
<p><span style="color: #64451d; font-family: Verdana; font-size: 12px;">mtd可写区大小:mtd->writesize=1024<<(extid&0x03);</span>
</p>
<p><span style="color: #64451d; font-family: Verdana; font-size: 12px;">这里可以看成1024*(1*2的(extid&0x03)次方),</span>
</p>
<p><span style="color: #64451d; font-family: Verdana; font-size: 12px;">mtdoob区大小:extid>>=2;mtd->oobsize = (8<<(extid&0x1))*(mtd->writesize>>9);</span>
</p>
<p><span style="color: #64451d; font-family: Verdana; font-size: 12px;">每512字节对应(8*2的(extid&0x1)次方)字节oob数据</span>
</p>
<p><span style="color: #64451d; font-family: Verdana; font-size: 12px;">mtd擦写块大小:extid>>=2;mtd->erasesize=(64*1024)<<(extid&0x03);</span>
</p>
<p><span style="color: #64451d; font-family: Verdana; font-size: 12px;">nand数据宽度 :extid>>=2;busw=(extid&0x01)?NAND_BUSEWIDTH_16:0; 现在大多为8位数据宽度</span>
</p>
<p><span style="color: #64451d; font-family: Verdana; font-size: 12px;">可以看出第四个字节extid的意义:</span>
</p>
<p><span style="color: #64451d; font-family: Verdana; font-size: 12px;">高|0 | 0 | 00 | 0 | 0 | 00 |低</span>
</p>
<p><span style="color: #64451d; font-family: Verdana; font-size: 12px;"> |无用|数据宽度|擦写块算阶|无用|oob算阶| 可写区算阶|</span>
</p>
<p><span style="color: #64451d; font-family: Verdana; font-size: 12px;">nand_get_flash_type(...)还确立了nandflash中的坏块标记在oob信息中的位置:</span>
</p>
<p><span style="color: #64451d; font-family: Verdana; font-size: 12px;">if(mtd->writesize>512||(busw&NAND_BUSWIDTH_16))</span>
</p>
<p><span style="color: #64451d; font-family: Verdana; font-size: 12px;"> chip->badblockpos = NAND_LARGE_BADBLOCKS_POS;//大页面flash的坏块信息存储地址为oob信息中的第1个字节开始处</span>
</p>
<p><span style="color: #64451d; font-family: Verdana; font-size: 12px;">else</span>
</p>
<p><span style="color: #64451d; font-family: Verdana; font-size: 12px;"> chip->badblockpos = NAND_SMALL_BADBLOCKS_POS;//大页面flash的坏块信息存储地址为oob信息中的第6个字节开始处</span>
</p>
<p><span style="color: #64451d; font-family: Verdana; font-size: 12px;">对于Samsun和Hynix的MLC型nandflash,坏块标记所在的页是每块的最后一个页,而Samsung,Hynix,和AMD的SLC型nandflash</span>
</p>
<p><span style="color: #64451d; font-family: Verdana; font-size: 12px;">中,坏块标记分别保存在每块开始的第1,2个页中,其他型号的nandflash大多都保存在第一个也中,为此需要作下标记:</span>
</p>
<p><span style="color: #64451d; font-family: Verdana; font-size: 12px;">坏块标记保存在块的最后一页中:chip->options |= NAND_BBT_SCANLASTPAGE;</span>
</p>
<p><span style="color: #64451d; font-family: Verdana; font-size: 12px;">坏块标记保存在块的第1,2页中 :chip->options |= NAND_BBT_SCAN2NDPAGE;</span>
</p>
<p><span style="color: #64451d; font-family: Verdana; font-size: 12px;">nand_scan之后调用nand_scan_tail(mtd)函数,</span>
</p>
<p><span style="color: #64451d; font-family: Verdana; font-size: 12px;">nand_scan_tail(...)函数主要完成MTD实例中各种方法的绑定,例如:</span>
</p>
<p><span style="color: #64451d; font-family: Verdana; font-size: 12px;">3338 mtd->read = nand_read;</span>
</p>
<p><span style="color: #64451d; font-family: Verdana; font-size: 12px;">3339 mtd->write = nand_write;</span>
</p>
<p><span style="color: #64451d; font-family: Verdana; font-size: 12px;">3340 mtd->panic_write = panic_nand_write;</span>
</p>
<p><span style="color: #64451d; font-family: Verdana; font-size: 12px;">3341 mtd->read_oob = nand_read_oob;</span>
</p>
<p><span style="color: #64451d; font-family: Verdana; font-size: 12px;">3342 mtd->write_oob = nand_write_oob;</span>
</p>
<p><span style="color: #64451d; font-family: Verdana; font-size: 12px;">3343 mtd->sync = nand_sync;</span>
</p>
<p><span style="color: #64451d; font-family: Verdana; font-size: 12px;">nand_scan_tail(...)调用chip->scan_bbt()完成坏块表的有关操作。</span>
</p>
<p><span style="color: #64451d; font-family: Verdana; font-size: 12px;">chip->scan_bbt的绑定过程是在nand_scan_ident()->nand_set_defaults():chip->scan_bbt = nand_default_bbt.</span>
</p>
<p><span style="color: #64451d; font-family: Verdana; font-size: 12px;">即真正用于坏块操作的是nand_default_bbt函数,该函数在nand_bbt.c中被定义。</span>
</p>
<div>
</div>
</span>
</p>
<p><span style="color: #ff0000;"><span style="color: #000000;"><span style="color: #000000;"></span>
</span>
</span>
</p>