E-COM-NET
首页
在线工具
Layui镜像站
SUI文档
联系我们
推荐频道
Java
PHP
C++
C
C#
Python
Ruby
go语言
Scala
Servlet
Vue
MySQL
NoSQL
Redis
CSS
Oracle
SQL Server
DB2
HBase
Http
HTML5
Spring
Ajax
Jquery
JavaScript
Json
XML
NodeJs
mybatis
Hibernate
算法
设计模式
shell
数据结构
大数据
JS
消息中间件
正则表达式
Tomcat
SQL
Nginx
Shiro
Maven
Linux
吴恩达-Coursera-ML
深度学习记录--矩阵维数
如何识别矩阵的维数如下图矩阵的行列数容易在前向和后向传播过程中弄错,故写这篇文章来提醒易错点顺便起到日后查表改错的作用本文仅作本人查询参考(摘自
吴恩达
深度学习笔记)
蹲家宅宅
·
2023-12-17 11:02
深度学习记录
深度学习
矩阵
人工智能
吴恩达
《机器学习》11-3-11-5:类偏斜的误差度量、查准率和查全率之间的权衡、机器学习的数据
一、类偏斜的误差度量误差度量的关键性之前的课程中已经提到了误差分析和设定误差度量值的重要性。评估学习算法并衡量其表现需要使用一个实数,这就是误差度量值。然而,在某些情况下,特别是当处理偏斜类时,选择正确的误差度量值可能会对算法的性能产生微妙但重要的影响。偏斜类的问题偏斜类的情况发生在训练集中某一类实例数量非常多,而其他类的实例数量很少或没有的情况下。举例来说,如果希望用算法来预测肿瘤是否是恶性的,
不吃花椒的兔酱
·
2023-12-16 12:01
机器学习
机器学习
学习
笔记
吴恩达
《机器学习》12-2-12-3:大边界的直观理解、大边界分类背后的数学
一、大边界的直观理解1.大间距分类器的背景支持向量机的大间距分类器着眼于构建一个能够在正负样本之间划定最大间距的决策边界。为了理解这一点,首先观察支持向量机的代价函数,其中涉及到正负样本的代价函数cos1()和cos0()。对于正样本(=1),我们希望^的值大于等于1,而对于负样本(=0),希望^的值小于等于-1。这要求决策边界不仅能够正确分离样本,还需要具备足够的“安全间距”。2.支持向量机的大
不吃花椒的兔酱
·
2023-12-16 12:01
机器学习
机器学习
学习
笔记
吴恩达
《机器学习》12-4-12-5:核函数 1、核函数 2
一、核函数11.多项式模型的局限性在之前的学习中,了解到可以使用多项式模型来解决无法用直线进行分隔的分类问题。例如,对于判定边界的建模,可能会使用类似于以下形式的模型:然而,这样的多项式模型在实际应用中可能存在一些问题,特别是对于高维度的数据。因此,需要一种更有效的方法来构造新的特征。2.核函数的引入为了解决上述问题,引入了核函数的概念。核函数允许我们通过将原有特征与预先选定的地标(Landmar
不吃花椒的兔酱
·
2023-12-16 12:55
机器学习
机器学习
学习
笔记
深度学习学习顺序梳理
spm_id_from=333.999.0.0&vd_source=9607a6d9d829b667f8f0ccaaaa142fcb1.
吴恩达
机器学习课程已学完,时间较久了,后续可以重新听一遍,整理一下笔记
陌上阳光
·
2023-12-14 23:37
深度学习
深度学习
人工智能
吴恩达
《机器学习》12-1:优化目标
在机器学习的旅程中,我们已经接触了多种学习算法。在监督学习中,选择使用算法A还是算法B的重要性逐渐减弱,而更关键的是如何在应用这些算法时优化目标。这包括设计特征、选择正则化参数等因素,这些在不同水平的实践者之间可能表现出截然不同的效果。在支持向量机(SupportVectorMachine,SVM)这一强大而受欢迎的算法中,我们发现了一种更为清晰且强大的学习方式,尤其在处理复杂非线性方程时。在这篇
不吃花椒的兔酱
·
2023-12-14 22:34
机器学习
机器学习
学习
笔记
单变量线性回归的机器学习代码
本文为学习
吴恩达
版本机器学习教程的代码整理,使用的数据集为https://github.com/fengdu78/Coursera-ML-AndrewNg-Notes/blob/f2757f85b99a2b800f4c2e3e9ea967d9e17dfbd8
ShawnWeasley
·
2023-12-14 22:59
AI
线性回归
机器学习
算法
学习机器学习开始的一些别人的看法
吴恩达
晒妻又晒车,顺便宣布了一个重大消息清华系“AI帮”崛起,要驱动1500亿元产业规模
wang--moumou
·
2023-12-14 19:15
# 解决Github克隆下载代码慢的问题(超级简单 不用修改Hosts)
最近我在学习
吴恩达
的机器学习课程,我需要将一些资料从Github中下载下来,如下图image但是如果直接在Github上克隆下载代码往往速度特别慢,200M的东西速度却是24kb/s,心态炸了。
Vicent
·
2023-12-05 23:30
吴恩达
深度学习笔记(36)-神经网络的梯度消失/梯度爆炸
梯度消失/梯度爆炸(Vanishing/Explodinggradients)训练神经网络,尤其是深度神经所面临的一个问题就是梯度消失或梯度爆炸,也就是你训练神经网络的时候,导数或坡度有时会变得非常大,或者非常小,甚至于以指数方式变小,这加大了训练的难度。这节课,你将会了解梯度消失或梯度爆炸的真正含义,以及如何更明智地选择随机初始化权重,从而避免这个问题。假设你正在训练这样一个极深的神经网络,为了
极客Array
·
2023-12-05 23:01
吴恩达
《机器学习》10-4-10-5:诊断偏差和方差、正则化和偏差/方差
一、诊断偏差和方差在机器学习中,诊断偏差和方差是改进模型性能的关键步骤。通过了解这两个概念,能够判断算法的问题究竟是欠拟合还是过拟合,从而有针对性地调整模型。1.概念理解偏差(Bias):表示模型对于训练数据的拟合程度。高偏差意味着模型过于简单,无法捕捉数据的复杂性,导致欠拟合。方差(Variance):表示模型对于训练数据的敏感程度。高方差意味着模型过于复杂,几乎完美地适应训练数据,但在未见过的
不吃花椒的兔酱
·
2023-12-03 22:30
机器学习
机器学习
学习
笔记
吴恩达
《机器学习》10-1-10-3:决定下一步做什么、评估一个假设、模型选择和交叉验证集
一、决定下一步做什么在机器学习的学习过程中,我们已经接触了许多不同的学习算法,逐渐深入了解了先进的机器学习技术。然而,即使在了解了这些算法的情况下,仍然存在一些差距,有些人能够高效而有力地运用这些算法,而其他人可能对接下来的步骤感到陌生,不清楚如何正确运用这些知识。在本节课程中,我们将讨论一个关键问题:在机器学习项目中,当我们面临改进算法性能的任务时,我们应该如何决定接下来的工作方向呢?为了解答这
不吃花椒的兔酱
·
2023-12-03 22:00
机器学习
机器学习
学习
笔记
吴恩达
《机器学习》11-1-11-2:首先要做什么、误差分析
一、首先要做什么选择特征向量的关键决策以垃圾邮件分类器算法为例,首先需要决定如何选择和表达特征向量。视频提到的一个示例是构建一个由100个最常出现在垃圾邮件中的词构成的列表,根据这些词是否在邮件中出现来创建特征向量,尺寸为100×1。构建分类器算法的决策对于垃圾邮件分类器,面临多个决策:收集更多数据:获取更多垃圾邮件和非垃圾邮件的样本,以提高算法的性能。基于邮件的路由信息开发特征:利用邮件的路由信
不吃花椒的兔酱
·
2023-12-03 22:29
机器学习
机器学习
学习
笔记
GPT 中文提示词技巧:参照 OpenAI 官方教程
概述-OpenAIAPI部分案例是参考:根据
吴恩达
老师教程总结出中文版prompt教程_哔哩哔哩_bilibiliup主的内容。
灰海宽松
·
2023-12-03 15:34
GPT
gpt
数据库
06、基于内容的过滤算法Tensorflow实现
06、基于内容的过滤算法Tensorflow实现开始学习机器学习啦,已经把
吴恩达
的课全部刷完了,现在开始熟悉一下复现代码。对这个手写数字实部比较感兴趣,作为入门的素材非常合适。
怡步晓心l
·
2023-12-03 11:16
人工智能
算法
tensorflow
人工智能
05、基于梯度下降的协同过滤算法
05、基于梯度下降的协同过滤算法理论与实践Python开始学习机器学习啦,已经把
吴恩达
的课全部刷完了,现在开始熟悉一下复现代码。对这个手写数字实部比较感兴趣,作为入门的素材非常合适。
怡步晓心l
·
2023-12-03 11:46
人工智能
算法
03、K-means聚类实现步骤与基于K-means聚类的图像压缩(2)
:03、K-means聚类实现步骤与基于K-means聚类的图像压缩(1)03、K-means聚类实现步骤与基于K-means聚类的图像压缩(2)K-means聚类的图像压缩开始学习机器学习啦,已经把
吴恩达
的课全部刷完了
怡步晓心l
·
2023-12-03 11:45
人工智能
kmeans
聚类
算法
04、基于高斯分布的异常检测算法
04、基于高斯分布的异常检测算法原理与实践开始学习机器学习啦,已经把
吴恩达
的课全部刷完了,现在开始熟悉一下复现代码。对这个手写数字实部比较感兴趣,作为入门的素材非常合适。
怡步晓心l
·
2023-12-03 11:39
人工智能
算法
深度学习
人工智能
2020-12-17
吴恩达
-神经网络与深度学习-第四周编程练习
Github地址:https://github.com/Poissons/wuenda-Deep-Learning-And-Neural-Network-fourth-week-excercise.git
Vivivivi安
·
2023-12-03 02:35
吴恩达
《ChatGPT Prompt Engineering for Developers》学习笔记
来自:口仆本笔记是deeplearning.ai最近推出的短期课程《ChatGPTPromptEngineeringforDevelopers》的学习总结。1引言总的来说,当前有两类大语言模型(LLM):「基础LLM」和「指令微调LLM」。基础LLM基于大量文本数据训练而成,核心思想为预测一句话的下一个单词(即词语接龙)。基于语料的限制,有时会返回不符合预期的结果(如上图所示)。指令微调LLM基于
stay_foolish12
·
2023-12-02 02:50
人工智能
吴恩达
神经网络和深度学习 assignment3 编程作业 构建神经网络模型
1、导入包#Packageimportsimportnumpyasnpimportmatplotlib.pyplotaspltfromtestCasesimport*importsklearnimportsklearn.datasetsimportsklearn.linear_modelfromplanar_utilsimportplot_decision_boundary,sigmoid,loa
sy今天看代码了吗
·
2023-12-01 23:50
Course1-Week3-分类问题
实现梯度下降4.过拟合与正则化4.1线性回归和逻辑回归中的过拟合4.2解决过拟合的三种方法4.3正则化4.4用于线性回归的正则方法4.5用于逻辑回归的正则方法笔记主要参考B站视频“(强推|双字)2022
吴恩达
机器学习
虎慕
·
2023-12-01 15:33
#
机器学习-吴恩达
分类
数据挖掘
人工智能
如何阅读一篇论文
来自于
吴恩达
斯坦福CS230课程步骤:1.列出所有相关文章2.跳过列表3.列出1-5篇文章从0%-100%开始阅读阅读量5-20Paper基本了解一个领域阅读量50-100Paper基本掌握这个领域
吴恩达
是怎么读论文的
gezigezao
·
2023-12-01 14:14
深度学习
人工智能
2018-03-02-初识机器学习
回家过春节的这段时间,也仅仅是在基友网上copy了
吴恩达
老师机器学习的教程,也无暇深入研习。现在已经三月初,在所里工作已经有一周左右,慢热的进入状态,开始了机器学习的征程。
cppcwang
·
2023-12-01 08:36
纯干货——《面向开发者的 ChatGPT Prompt工程》学习笔记
前言本文为
吴恩达
教授联合Isa一起开设的提示工程教程笔记,记录了一些重要的知识点,并且把实践源码中文版贴出来了,可以跟着本文一起实操~也可以跟着视频过一遍此教程的主要目的是为大家介绍如何在自己的应用开发过程中
MonsterQy
·
2023-11-30 19:55
AI
chatgpt
prompt
学习
人工智能
吴恩达
深度学习笔记(45)-Adam 优化算法(Adam optimization)
Adam优化算法(Adamoptimizationalgorithm)在深度学习的历史上,包括许多知名研究者在内,提出了优化算法,并很好地解决了一些问题,但随后这些优化算法被指出并不能一般化,并不适用于多种神经网络,时间久了,深度学习圈子里的人开始多少有些质疑全新的优化算法,很多人都觉得动量(Momentum)梯度下降法很好用,很难再想出更好的优化算法。所以RMSprop以及Adam优化算法,就是
极客Array
·
2023-11-30 04:58
【
吴恩达
机器学习】第十周—大规模机器学习和随机梯度下降
31.jpg1.大规模机器学习1.1大型数据集现实世界中,往往数据集的规模很大,譬如人口普查数据、谷歌、阿里、亚马逊,....等这些互联网公司产生的海量数量。不论采用怎样的算法或优化,可能最后决定模型准确度的主要因素就是数据集的规模,于是,研究和优化大规模数据集的训练变成了很重要的内容。1.png针对大数据集,如果我们一上来就用传统的梯度下降算法,可能往往会训练很慢很慢,达不到预期要求。那么我们该
Sunflow007
·
2023-11-30 02:10
吴恩达
机器学习课后作业Python实现 03 Multi-class Classification & Neural Network
文章目录题目描述数据集介绍逻辑回归(多元分类)神经网络题目描述在本练习中,将使用逻辑回归和神经网络来识别手写数字(从0到9)。练习的第一部分,将扩展之前的逻辑回归实现,将其应用于一对多的分类;第二部分将使用神经网络进行数字识别。数据集介绍该数据集共有5000个训练样本,每个样本是20*20像素的灰度图像,每个像素为一个浮点数,表示该位置的灰度强度。20×20的像素网格被展开成一个400维的向量。在
shy~
·
2023-11-30 01:27
机器学习
python
机器学习
吴恩达
机器学习课后作业Python实现 01 Linear Regression
文章目录题目说明单变量线性回归梯度下降正则方程调用sklearn库多变量线性回归题目说明在本部分的练习中,您将使用一个变量实现线性回归,以预测食品卡车的利润。假设你是一家餐馆的首席执行官,正考虑在不同的城市开设一个新的分店。该连锁店已经在各个城市拥有食品卡车,而且你有来自城市的利润和人口数据。您希望通过使用这些数据来帮助您扩展到下一个城市。单变量线性回归导入库importnumpyasnpimpo
shy~
·
2023-11-30 01:57
机器学习
python
机器学习
吴恩达
机器学习课后作业Python实现 02 Logistic Regression
文章目录逻辑回归正则化逻辑回归逻辑回归题目描述设想你是某大学相关部分的管理者,想通过申请学生两次测试的评分,来决定他们是否被录取。现在你拥有之前申请学生的可以用于训练逻辑回归的训练样本集。对于每一个训练样本,你有他们两次测试的评分和最后是被录取的结果。可以准备构建一个基于两次测试评分来评估录取可能性的分类模型来完成这个预测任务。导入库importnumpyasnpimportpandasaspdi
shy~
·
2023-11-30 01:57
机器学习
python
机器学习
LLM大语言模型学习资料整理2308
2333331、
吴恩达
与OpenAI合作系列课程(中文版)《面向开发者的LLM入门课程》在线阅读地址:https://datawhalechina.github.io/prompt-engineering-for-developers
Mango_Holi
·
2023-11-29 19:05
语言模型
人工智能
自然语言处理
吴恩达
《机器学习》10-6-10-7:学习曲线、决定下一步做什么
一、学习曲线1.学习曲线概述学习曲线将训练集误差和交叉验证集误差作为训练集实例数量(m)的函数绘制而成。这意味着从较少的数据开始,逐渐增加训练集的实例数量。该方法的核心思想在于,当训练较少数据时,模型可能会完美地适应这些数据,但这并不代表它能够很好地适应交叉验证集或测试集数据。2.识别高偏差/欠拟合在学习曲线中,对于高偏差或欠拟合的情况,增加训练集数据可能不会显著改善模型效果。具体而言,如果使用一
不吃花椒的兔酱
·
2023-11-29 12:48
机器学习
机器学习
学习
笔记
吴恩达
深度学习(六)
超参数调整第一课:调整过程调整神经网络的过程包含了对许多不同超参数的设置,那么怎么样为这些参数找到比较合适的设定值呢?准则和系统化进行超参数设置的技巧将帮助你更加快速有效的获得合适的超参数。在深度神经网络训练中,面对大量的超参数,包括学习速率α、动量超参数β1、Adam优化算法中的超参数β2和ε、网络层数以及每层网络中隐藏单元的数量、学习率衰减情况下不可能只有单一的学习率、mini-batch的大
带刺的小花_ea97
·
2023-11-29 02:12
前向传播算法
跟着
吴恩达
老师入门机器学习所谓前向传播就是也就是从左向右的算法首先根据W的列数来判断有多少个神经元,W.shape[1]就是输出W矩阵的列数每个神经元都会输出一个值循环遍历获得这层所有的神经元的输出a_out
passerby58
·
2023-11-28 17:35
算法
python
深度学习
Coursera-
吴恩达
机器学习课程个人笔记-Week2
Week2线性回归和梯度下降法参数说明1.多特征的线性回归方程2.梯度下降法(GradientDescent)2.1如何选择参数向量θ呢?2.2优化梯度下降法的方法 1).特征缩放(特征标准化) 2).学习率α的选择2.3批量梯度下降算法和随机梯度下降算法3.线性回归的“非线性拟合”4.目标函数J(θ)的最小值的线性代数求法(了解)4.1目标函数J(θ)的最小值求解过程:4.2梯度下降法和线代
lavendelion
·
2023-11-28 15:22
机器学习笔记
吴恩达
机器学习
笔记
02、Tensorflow实现手写数字识别(数字0-9)
02、Tensorflow实现手写数字识别(数字0-9)开始学习机器学习啦,已经把
吴恩达
的课全部刷完了,现在开始熟悉一下复现代码。对这个手写数字实部比较感兴趣,作为入门的素材非常合适。
怡步晓心l
·
2023-11-27 06:50
人工智能
tensorflow
人工智能
python
斯坦福机器学习 Lecture3
卧槽,
吴恩达
讲得太好了22:20-41:00接下来我们看交叉熵(逻辑回归)推导逻辑回归定义交叉熵推导今天的机器学习就学到这里,先做作业TODO:here
shimly123456
·
2023-11-26 05:51
斯坦福机器学习
机器学习
人工智能
适合有编程基础的人看的《韩顺平零基础30天学java》笔记【最后一章:正则表达式】
无意间发现韩顺平老师的课程,细心细致,讲课和
吴恩达
老师一样,都是保姆式讲解,各种基础知识都会补充,爱了。
努力学习的程序兔一枚
·
2023-11-25 23:01
java后端开发学习
java
吴恩达
机器学习作业4(python)
git参考(课程+代码+作业)代码不包括画图部分正向传播importnumpyasnpimportmatplotlib.pylabaspltimportscipy.ioassioimportmathimportscipy.optimizeasop#神经网络#分类(识别)手写数字图片np.set_printoptions(threshold=np.inf)#print()可以显示所有数据data=s
之江小林
·
2023-11-25 16:27
机器学习
python
机器学习
numpy
吴恩达
机器学习作业2(python)
git参考(课程+代码+作业)代码不包括画图部分逻辑回归op.minimize高级算法计算代价最小值importnumpyasnpimportscipy.optimizeasop#逻辑回归,分类问题#梯度下降,高级算法求最小代价defsigmoid(z):return1/(1+np.exp(-z))defcostFunction(theta,x,y):m=np.size(y)h=sigmoid(x
之江小林
·
2023-11-25 16:57
机器学习
python
吴恩达
机器学习作业3(python)
git参考(课程+代码+作业)代码不包括画图部分逻辑回归importnumpyasnpimportmatplotlib.pylabaspltimportscipy.ioassioimportmathimportscipy.optimizeasop#逻辑回归#分类(识别)手写数字图片defsigmoid(z):return1/(1+np.exp(-z))defcostFunction(theta,x
之江小林
·
2023-11-25 16:57
机器学习
python
2023-11-21时间记录
听英语课程深度学习阅读书籍,也可以练练字今天干了什么2023-11-21时间记录8:30(下床)10:00(开始学习)学习输出8:30(下床)洗漱煮蛋,9:45出门10:00(开始学习)10:00-11:30英语听力
吴恩达
深度学习
多喝开水少熬夜
·
2023-11-25 14:37
学习计划与实际
学习
01、Tensorflow实现二元手写数字识别
01、Tensorflow实现二元手写数字识别(二分类问题)开始学习机器学习啦,已经把
吴恩达
的课全部刷完了,现在开始熟悉一下复现代码。对这个手写数字实部比较感兴趣,作为入门的素材非常合适。
怡步晓心l
·
2023-11-25 13:14
人工智能
tensorflow
人工智能
python
吴恩达
《机器学习》9-7-9-8:综合起来、自主驾驶
在神经网络的使用过程中,需要经历一系列步骤,从网络结构的选择到训练过程的实施。以下是使用神经网络时的主要步骤的小结:一、网络结构的选择输入层:第一步是选择网络结构,即确定神经网络的层数以及每层的单元数。输入层的单元数应该等于训练集的特征数量。输出层:输出层的单元数应该等于训练集中结果的类的数量。隐藏层:如果有隐藏层,确保每个隐藏层的单元数相同。通常情况下,隐藏层单元的数量越多越好。需要决定的是隐藏
不吃花椒的兔酱
·
2023-11-24 16:05
机器学习
机器学习
学习
笔记
机器学习(1)监督学习和无监督学习
斯坦福大学
吴恩达
教授的机器学习课程堪称经典,参考该课程,来和大家一起入门学习机器学习这一领域。机器学习是什么?不存在一个被广泛认可的定义在进行特定编程的情况下,给予计算机学习能力的领域。
天凉玩个锤子
·
2023-11-24 13:40
吴恩达
Coursera深度学习课程 course2-week1 深度学习的实践层面 总结
P0前言第二门课:ImprovingDeepNeuralNetworks:Hyperparameterturing,RegularizationandOptimization(改善深层神经网络:超参数调试、正则化以及优化)第一周:PracticalaspectsofDeepLearning(深度学习的实践层面)主要知识点:(Train/Dev/Testsets)训练测试集划分、(Bias/Vari
ASR_THU
·
2023-11-23 19:40
超参数调试
正则化
吴恩达
深度学习课程
优化
Course1-Week2-多输入变量的回归问题
用于多元线性回归的梯度下降法2.使梯度下降法更快收敛的技巧2.1特征缩放2.2判断梯度下降是否收敛2.3如何设置学习率3.特征工程3.1选择合适的特征3.2多项式回归笔记主要参考B站视频“(强推|双字)2022
吴恩达
机器学习
虎慕
·
2023-11-23 19:39
#
机器学习-吴恩达
回归
数据挖掘
人工智能
2022
吴恩达
机器学习第3课week3
2022
吴恩达
机器学习课程学习笔记(第三课第三周)1-1什么是强化学习1-2示例:火星探测器1-3强化学习的回报1-4决策:强化学习中的策略1-5审查关键概念2-1状态-动作价值函数定义2-2状态-动作价值函数示例
天微亮。
·
2023-11-23 19:38
吴恩达机器学习
机器学习
人工智能
算法
吴恩达
深度学习Course1-Week(3)
吴恩达
深度学习Course1-Week(3)文章目录
吴恩达
深度学习Course1-Week(3)一、什么是神经网络NeuralNetwork?
木心
·
2023-11-23 19:35
DeepLearning
神经网络
深度学习
机器学习
吴恩达
深度学习Course1-Week(1)(2)
吴恩达
深度学习Course1-Week(1)(2)文章目录
吴恩达
深度学习Course1-Week(1)(2)一、影响神经网络的性能的因素二、逻辑回归(logisticregression)中的一些符号(
木心
·
2023-11-23 19:05
DeepLearning
深度学习
神经网络
机器学习
上一页
1
2
3
4
5
6
7
8
下一页
按字母分类:
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z
其他