En-Compactness:Self-Distillation Embedding&Contrastive Generation forGeneralized Zero-Shot Learning
1.引言基于大量标记数据的图像分类任务[6,16,23]由于深度学习的进步取得了巨大的进展[13,21,55]。然而,深度模型对数据的强烈依赖性使其在某些类别缺乏或甚至没有标记数据的情况下表现不佳[47]。零样本学习(ZSL)[24,35]被提出来解决这一数据缺失问题,通过识别来自未见过类别的对象。首先,它们在已见过的类别上学习分类模型,这些类别提供了训练样本,然后使用类别级别的语义描述符[10,