深度学习在非线性场景中的核心应用领域及向量/张量数据处理案例,结合工业、金融等领域的实际落地场景分析
一、工业场景:非线性缺陷检测与预测1.半导体晶圆缺陷检测问题:微米级划痕、颗粒污染等缺陷形态复杂,与正常纹理呈非线性关系。解决方案:输入张量:高分辨率晶圆图像→三维张量(Batch,Height,Width,Channels)12模型结构:CNN+ReLU激活函数→多层非线性特征提取38输出:缺陷位置概率热图(二维张量)效果:某大厂误检率从8%降至0.5%,检测速度提升