DDPM(Denoising Diffusion Probabilistic Models)的公式推导
总结:DDPM通过最小化预测噪声的均方误差,使反向过程逐步去噪生成数据。核心推导在于通过变分推断将KL散度转换为噪声预测问题,大幅简化了训练目标。1.前向扩散过程前向过程通过\(T\)步逐渐向数据\(x_0\)添加高斯噪声,最终得到纯噪声\(x_T\)。每步定义为:\[q(x_t|x_{t-1})=\mathcal{N}\left(x_t;\sqrt{1-\beta_t}x_{t-1},\beta