E-COM-NET
首页
在线工具
Layui镜像站
SUI文档
联系我们
推荐频道
Java
PHP
C++
C
C#
Python
Ruby
go语言
Scala
Servlet
Vue
MySQL
NoSQL
Redis
CSS
Oracle
SQL Server
DB2
HBase
Http
HTML5
Spring
Ajax
Jquery
JavaScript
Json
XML
NodeJs
mybatis
Hibernate
算法
设计模式
shell
数据结构
大数据
JS
消息中间件
正则表达式
Tomcat
SQL
Nginx
Shiro
Maven
Linux
random_state
使用随机森林做特征选择
fromsklearn.ensembleimportRandomForestClassifierfeat_lables=trainx.columnsforest=RandomForestClassifier(n_estimators=10000,
random_state
LightsUpW
·
2018-07-04 17:12
代码积累
python实现基本的机器学习算法系列(2):logstic回归
fromsklearn.datasetsimportmake_blobsfromsklearn.model_selectionimporttrain_test_splitimportmatplotlib.pyplotaspltimportnumpyasnpX,y_=make_blobs(n_samples=10000,n_features=2,centers=2)#,
random_state
Kerrwy
·
2018-06-28 23:09
python
机器学习
Sklearn 随机划分训练集和测试集
X_train,X_test,y_train,y_test=cross_validation.train_test_split(train_data,train_target,test_size=0.4,
random_state
love music.
·
2018-06-25 21:10
Deep
Learning
Python中的逻辑回归(Logistic Regression)函数
classsklearn.linear_model.LogisticRegression(penalty='l2',dual=False,tol=0.0001,C=1.0,fit_intercept=True,intercept_scaling=1,class_weight=None,
random_state
小白的进阶
·
2018-05-30 17:13
机器学习
python
sklearn的train_test_split
X_train,X_test,y_train,y_test=cross_validation.train_test_split(train_data,train_target,test_size=0.3,
random_state
JamesLi6
·
2018-05-15 19:07
数据分析
王家林人工智能AI第19课:使用决策树在Social Network上构建汽车销售推荐系统老师微信13928463918
SocialNetwork上构建汽车销售推荐系统老师微信13928463918决策树中的熵entropy:classifier=DecisionTreeClassifier(criterion='entropy',
random_state
段智华
·
2018-05-12 21:55
AI
&
Big
Data案例实战课程
scikit-learn用train_test_split随机划分数据集和训练集
随机客观的划分数据,减少人为因素完整模板:train_X,test_X,train_y,test_y=train_test_split(train_data,train_target,test_size=0.3,
random_state
不论如何未来很美好
·
2018-05-11 15:53
数据挖掘
学习笔记:使用python将数据集划分成测试集和训练集
Python3.6,numpy1.14.2+mkl调用sklearn库的划分函数如下其中train_data为训练输入的数据,train_target为数据类别,test_size为测试集占数据集的比例,
random_state
folk_
·
2018-05-05 19:53
shuffle
X_train,X_test,y_train,y_test=cross_validation.train_test_split(all_train_data,all_label,test_size=0.4,
random_state
fkyyly
·
2018-04-18 00:10
Python
sklearn的make_circles和make_moons生成数据
article/details/53649330make_circles:sklearn.datasets.make_circles(n_samples=100,shuffle=True,noise=None,
random_state
YangWei_19
·
2018-04-14 23:17
sklearn
Python笔记——cross_validation模块、train_test_split
random_state
相当于随机数种子,你可以先看一下图片中的代码和运行结果来了解它的作用。图中设置了random.seed()就相当于在SVC中设置了
random_state
。
Burgess_ni
·
2018-04-07 15:05
Sklearn的train_test_split用法
语法X_train,X_test,y_train,y_test=cross_validation.train_test_split(X,y,test_size,
random_state
)参数说明CodeTextX
fxlou
·
2018-01-28 20:15
python
sklearn
Python机器学习库sklearn.model_selection模块的几个方法参数
sklearn库可以解决的问题:train_test_split返回切分的数据集train/testtrain_test_split(*array,test_size=0.25,train_size=None,
random_state
Young_win
·
2018-01-16 19:28
ML和DL的Python实现
(sklearn)逻辑回归linear_model.LogisticRegression用法
classsklearn.linear_model.LogisticRegression(penalty=’l2’,dual=False,tol=0.0001,C=1.0,fit_intercept=True,intercept_scaling=1,class_weight=None,
random_state
MVincent
·
2017-11-10 14:11
(sklearn)ElasticNet回归 sklearn.linear_model.ElasticNet用法
normalize=False,precompute=False,max_iter=1000,copy_X=True,tol=0.0001,warm_start=False,positive=False,
random_state
MVincent
·
2017-11-09 16:44
(sklearn)lasso回归linear_model.Lasso()方法
normalize=False,precompute=False,copy_X=True,max_iter=1000,tol=0.0001,warm_start=False,positive=False,
random_state
MVincent
·
2017-11-09 15:21
(sklearn)岭回归 sklearn.linear_model.Ridge用法
classsklearn.linear_model.Ridge(alpha=1.0,fit_intercept=True,normalize=False,copy_X=True,max_iter=None,tol=0.001,solver=’auto’,
random_state
MVincent
·
2017-11-09 10:35
sklearn.linear_model中的LogisticRegression
classsklearn.linear_model.LogisticRegression(penalty=’l2’,dual=False,tol=0.0001,C=1.0,fit_intercept=True,intercept_scaling=1,class_weight=None,
random_state
__gyl__
·
2017-08-22 20:18
sklearn
sklearn.model_selection.KFold
K折交叉验证:sklearn.model_selection.KFold(n_splits=3,shuffle=False,
random_state
=None)思路:将训练/测试数据集划分n_splits
每天进步一点点2017
·
2017-07-10 10:47
sklearn
scikit learn 中pca 的用法
classsklearn.decomposition.PCA(n_components=None,copy=True,whiten=False,svd_solver='auto',tol=0.0,iterated_power='auto',
random_state
Jiede1
·
2017-03-19 11:34
机器学习
python学习
RandomizedSearchCV和GridSearchCV,在调用fit方法的时候产生'list' object has no attribute 'values'错误之处理方法
SplitthedatasetintwoequalpartsX_train,X_test,y_train,y_test=train_test_split(data,label,test_size=0.25,
random_state
glanose
·
2017-02-24 10:41
python
scikit-learn
数据
技巧
数据科学家
机器学习
学习笔记
数据分析
python
画图工具matplotlib简单实用--绘制散点图
fromsklearn.datasets.samples_generatorimportmake_blobsimportmatplotlib.pyplotaspltX,y=make_blobs(n_samples=100,centers=3,n_features=2,
random_state
_飞奔的蜗牛_
·
2016-12-14 00:11
机器学习与数据挖掘
python
将数据集切分成“训练-测试数据集”和交叉验证
fromsklearn.cross_validationimporttrain_test_splitXd_train,Xd_test,y_train,y_test=train_test_split(X_d,y,
random_state
chloezhao
·
2016-12-07 11:04
Python
数据集
将数据集切分成“训练-测试数据集”和交叉验证
fromsklearn.cross_validationimporttrain_test_splitXd_train,Xd_test,y_train,y_test=train_test_split(X_d,y,
random_state
chloezhao
·
2016-12-07 11:04
Python
数据集
将数据集切分成“训练-测试数据集”和交叉验证
fromsklearn.cross_validationimporttrain_test_splitXd_train,Xd_test,y_train,y_test=train_test_split(X_d,y,
random_state
Chloezhao
·
2016-12-07 11:00
Kaggle(2):验证和过分拟合
1、随机森林的参数在Scikitlearn中使用RandomForestClassifier()进行随机森林分类,其中参数
random_state
为生成随机数的种子,n_estimators为随机森林的数目
elecjack
·
2016-03-10 23:00
learn
随机森林
scikit
过分拟合
overfitting
example datasets
核方法最终的使命是:unfoldthehalf-moonsfromsklearn.datasetsimportmake_moons X,y=make_moons(n_samples=200,shuffle=True,
random_state
lanchunhui
·
2016-01-10 20:00
numpy 常用api(三)
numpy常用api(一)numpy常用api(二)一个函数提供
random_state
的关键字参数(keywordparameter):是为了结果的可再现性(reoccurrence)或叫可重复性。
lanchunhui
·
2016-01-10 11:00
sklearn.cluster.k_means_.k_means()
precompute_distances='auto', n_init=10, max_iter=300, verbose=False, tol=1e-4,
random_state
py_god
·
2015-07-17 10:00
sklearn.cluster.k_means._kmeans_single()
kmeans_single(X, n_clusters, x_squared_norms, max_iter=300, init='k-means++', verbose=False,
random_state
py_god
·
2015-07-16 21:00
sklearn.cluster.k_means_._kmeans_single()
kmeans_single(X, n_clusters, x_squared_norms, max_iter=300, init='k-means++', verbose=False,
random_state
py_god
·
2015-07-16 20:00
sklearn.cluster.k_means_._k_init
random_state
:随机数产生器,你懂得。。n_local_trials:每次取n_local_trials个候选中心点(第一次除外),然后从中选取最好的一个。过程
py_god
·
2015-07-15 14:00
聚类分析
sklearn
kmean++
sklearn.cluster.k_means_._init_centroids
random_state
:用于产生中心的产生器,若为整数,则为种子,默认为globalnumpyrandomnumbergenerator。
py_god
·
2015-07-14 16:00
sklearn
初始中心点
k_means
上一页
2
3
4
5
6
7
8
9
下一页
按字母分类:
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z
其他