Fine-Tuning Language Models from Human Preferences
Abstract奖励学习(rewardlearning)可以将强化学习(RL)应用到由人类判断定义奖励的任务中,通过询问人类问题来构建奖励模型。奖励学习的大部分工作使用了模拟环境,但是关于价值的复杂信息经常是以自然语言的形式表达的。我们相信语言奖励学习是使强化学习在现实世界任务中实用且安全的关键。在本文中,我们基于语言模型生成式预训练方面的进展,将奖励学习应用于四种自然语言任务:continuin