- 游戏成瘾与学习动力激发策略研究——了解“情感解离”“创伤理论”
*TQK*
知也思维认知心理学研究
一、情感解离(EmotionalDissociation)定义:情感解离是一种心理防御机制,指个体在经历无法承受的情绪压力或创伤时,通过切断情感体验与认知、记忆或现实感知的联系来保护自我。它不是简单的“麻木”,而是大脑为应对极端刺激而启动的“紧急逃生通道”。核心特征1、意识分裂现实解离:感到身体或环境“不真实”(如玩游戏时出现“灵魂出窍”般的视角抽离)情感隔离:能描述事件但无法体验对应情绪(如你通
- AIGC带来数据革命:R语言如何成为数据科学家的秘密武器?
程序边界
AIGCr语言开发语言
文章目录一、R语言的基础特性1.1R语言的起源与发展1.2R语言的核心优势二、R语言在AIGC中的应用场景2.1数据预处理与清洗2.2文本分析与生成2.3机器学习与模型构建2.4数据可视化与报告生成三、R语言在AIGC中的具体案例3.1金融数据分析与预测3.2医疗数据分析与建模3.3社交媒体数据分析与情感分析四、R语言在AIGC中的未来展望4.1与深度学习框架的集成4.2与云计算平台的集成4.3与
- AI在项目中的应用
酒江
人工智能
AI大模型(如GPT-4、BERT、T5等)在各类项目中有广泛的应用,可以极大地提高项目效率、优化流程,并解决许多传统方法难以应对的问题。以下是AI大模型在不同类型项目中的一些具体应用:1.自然语言处理(NLP)文本生成和摘要:AI大模型可以生成高质量的文本内容,自动撰写文章、新闻报道、博客或技术文档,甚至可以进行文献摘要,帮助内容创作者提高效率。情感分析:在客户服务、社交媒体监控或市场研究项目中
- 超全!600 个通用大模型Prompt指令
AI Echoes
人工智能
超全!600个ChatGPT通用Prompt指令:1.电子邮件营销提示“我需要一种[电子邮件类型],让我的[理想客户角色]对我的[产品/服务]产生[情感],并说服他们以紧迫感采取[期望的行动]。”“我正在寻找一种[电子邮件类型],它可以直接说明我的[理想客户角色]的需求和痛点,并以紧迫感和强烈的提议说服他们采取[期望的行动]。”“我需要一封[电子邮件类型],向[理想的客户角色]展示我的[产品/服务
- 麦萌:《我们曾经有过家》深度解析 | 被至亲背刺后,首富如何用“系统性重构”逆风翻盘?
短剧萌
重构
剧情全解析:从“隐忍架构”到“复仇算法”的史诗级崩盘与逆袭1.系统初始化:首富的“降权模式”安城首富高志强为守护妻子李梦露的“平凡人生”,主动剥离财富与地位,化身能源厂普通职员。这一行为如同将分布式系统的核心节点降级为边缘服务——他默默为妻子铺路,助其从基层员工晋升至副厂长,甚至计划将能源厂最高控制权(厂长职位)移交给她。2.致命漏洞:情感协议的全面违约在权力交接的关键时刻(相当于系统升级前夜),
- 实战级AI变现路线:从0到3万/月的3大黄金赛道拆解
zhz5214
AI人工智能智能体aiAI编程程序员创富
赛道一:AI短视频带货(三农领域)全流程操作手册选题系统搭建借助DeepSeek-R1云端版,输入"地域特色(如云南菌菇)+情感共鸣点(留守老人)+产品植入位(土特产)"生成结构化选题指令示例:{"prompt":"生成三农领域爆款选题,输出JSON结构"}日产能200+选题,筛选率15%分镜工业化生产使用Gemini2.0flash的vision功能,配置参数:-分辨率:1080x1920竖版-
- 情感分析任务的概述
阿你不是
python开发语言
一、情感分析的概述1、什么是情感分析情感分析,也称为情感分类,是一种自然语言处理的任务,用于分析文本、语音或其他形式的数据中所包含的情感倾向。其目标是判断数据表达的情感是积极的(Positive)、消极的(Negative)还是中立的(Neutral),或者进一步细化为更复杂的情感类别(如愤怒、喜悦、悲伤等)。2、情感分析的主要应用场景1)商业领域:情感分析主要进行产品评价分析,从客户和买家的评价
- Ollama 基本概念
Mr_One_Zhang
学习Ollamaai
Ollama是一个本地化的、支持多种自然语言处理(NLP)任务的机器学习框架,专注于模型加载、推理和生成任务。通过Ollama,用户能够方便地与本地部署的大型预训练模型进行交互。1.模型(Model)在Ollama中,模型是核心组成部分。它们是经过预训练的机器学习模型,能够执行不同的任务,例如文本生成、文本摘要、情感分析、对话生成等。Ollama支持多种流行的预训练模型,常见的模型有:deepse
- 到底选谁?oelove 婚恋系统10.0和金媒10.3都升级了
weixin_wx520-1983
小程序
目前都是婚庆类程序的佼佼者,两套系统很多网友不知道选哪个!我分享下我的建议,两套系统我都有目前OElove旗舰版(含商城插件+情感系统插件)金媒最新也是10.3旗舰版。1.对比性能架构两套系统我都在用,性能方面的话OElove因为非全开源所以运行效率要低一些特别是早期5.0之前版本运行期来就更慢了,体验滑坡,后来官方又把架构重新写了一边速度块了很多,金媒程序本身是全开源所以运行没问题。2.功能和稳
- 基于 svm 的金融咨询情感分析
ouprince
NLPsvm情感分析
详细代码与代码说明可见我的github:https://github.com/ouprince/svm处理流程:(1)金融咨询处理1.利用7万多条利好/利空语料(已经标注好的,分为1正性,-1负性两类),首先采用B-gram卡方差提取特征词汇2.使用卡方提取的特征词为每一篇咨询建立向量表示模型3.使用向量进行svm分割,训练语料80%,测试语料20%,并评估模型准确率,保存模型。4.加载保存的模型
- 基于AI算法实现的情感倾向分析的方法
程序员奇奇
计算机毕设人工智能算法
完整代码:https://download.csdn.net/download/pythonyanyan/87430621背景目前,情感倾向分析的方法主要分为两类:一种是基于情感词典的方法;一种是基于机器学习的方法,如基于大规模语料库的机器学习。前者需要用到标注好的情感词典,英文的词典有很多,中文主要有知网整理的情感词典Hownet和台湾大学整理发布的NTUSD两个情感词典,还有哈工大信息检索研究
- 【基于PyTorch】多项式贝叶斯分类器实现中文文本情感分类任务
鱼弦
机器学习设计类系统pytorch分类人工智能
多项式贝叶斯分类器实现中文文本情感分类任务介绍多项式朴素贝叶斯(MultinomialNaiveBayes,MultinomialNB)是一种常用于文本分类的算法,特别适用于多类别文本分类。其在处理离散数据(如文本数据中的词频)时表现优异,可以用于情感分析、垃圾邮件检测等任务。应用使用场景情感分析:识别用户评论的情感,例如正面评论和负面评论。垃圾邮件检测:鉴别电子邮件是否为垃圾邮件。新闻分类:将新
- 你的AI客服为何总抓不住客户核心诉求?(附特征优化方案)
人工智能
1特征工程的意义nlp任务中,原始文本经数值映射后形成的词向量序列,难充分表达语言深层语义特征。就需引入文本特征增强技术:语义信息补全:突破单词语义局限,捕获词序关联特征模型适配优化:构建符合算法输入规范的矩阵结构评估指标提升:通过特征增强直接影响模型准确率、召回率等核心KPI如电商评论情感分析场景,单纯用词频特征可能导致"这个手机质量差得惊人"和"这个手机质量惊人地差"被判定为相同语义,此时bi
- Assembly语言的自然语言处理
花韵婷
包罗万象golang开发语言后端
Assembly语言在自然语言处理中的应用引言自然语言处理(NaturalLanguageProcessing,NLP)作为人工智能的一个重要分支,致力于实现计算机与人类语言之间的互动。随着计算能力的提升以及大数据的蓬勃发展,NLP在各个领域的应用如火如荼。从语音识别、机器翻译到情感分析等,NLP正在改变我们与信息之间的互动方式。不过,当前主流的NLP研究通常是用高级编程语言(如Python、Ja
- Python 爬虫实战:电影评论数据抓取与自然语言处理
西攻城狮北
python爬虫开发语言
引言作为一名对电影数据和自然语言处理感兴趣的内容创作者,我决定利用Python爬虫技术抓取IMDb上的电影评论数据,并进行自然语言处理分析。这不仅可以帮助我们了解观众对电影的反馈,还能为电影制作方提供有价值的参考。一、项目背景IMDb(互联网电影数据库)是全球最大的电影数据库,用户可以在上面查看电影信息和用户评论。本项目旨在爬取IMDb上的电影评论,并对评论进行自然语言处理(NLP),以提取情感、
- Python自动化炒股:基于自然语言处理的股票新闻情感分析模型开发与优化的最佳实践
云策量化
Python自动化炒股量化投资量化软件python量化交易QMTPTrade量化炒股量化投资deepseek
推荐阅读:《程序化炒股:如何申请官方交易接口权限?个人账户可以申请吗?》Python自动化炒股:基于自然语言处理的股票新闻情感分析模型开发与优化的最佳实践在股市中,信息的力量是巨大的。一条新闻、一篇报道,甚至一条推文,都可能引发股价的波动。因此,利用自然语言处理(NLP)技术来分析股票新闻的情感倾向,可以帮助我们预测市场动向,从而做出更明智的投资决策。本文将带你了解如何开发和优化一个基于Pytho
- 大模型工程师学习日记(十五):Hugging Face 模型微调训练(基于 BERT 的中文评价情感分析)
MMMMMMMay Love Code
学习bert人工智能深度学习自然语言处理全量微调
1.datasets库核心方法1.1.列出数据集使用datasets库,你可以轻松列出所有HuggingFace平台上的数据集:fromdatasetsimportlist_datasets#列出所有数据集all_datasets=list_datasets()print(all_datasets)1.2.加载数据集你可以通过load_dataset方法加载任何数据集:fromdatasetsim
- 【大一新生必收藏系列】❤机器学习7大方面,30个数据集。纯干货分享❤
.Boss.
机器学习人工智能python算法开发语言笔记#大一新生
.记住了就可以跟同学装起来了嗷....目录.纯干货回归问题分类问题图像分类文本情感分析自然语言处理自动驾驶金融类...........纯干货..................在刚刚开始学习算法的时候,大家有没有过这种感觉,最最重要的那必须是算法本身!其实在一定程度上忽略了数据的重要性。而事实上一定是,质量高的数据集可能是最重要的!数据集在机器学习算法项目中具有非常关键的重要性,数据集的大小、质量
- 小狐狸AI数字人源码独立SAAS部署全开源+搭建环境教程
kaui52066
kaui52066精品源码人工智能uni-app前端小程序php小狐狸AI数字人数字人源码
一.系统介绍小狐狸AI数字人分身系统源码独立部署支持PC端、小程序端、H5端,一键克隆真人形象+声音核心功能亮点:1:1真人级克隆技术声音克隆:上传3分钟音频,AI深度学习声纹特征,复刻语气、情感、方言形象克隆:通过照片/视频建模,生成动态3D数字人,表情自然,动作流畅智能口型同步引擎AI算法精准匹配唇形与语音,实现口型同步0门槛SAAS化操作无需专业设备,网页端一键生成数字人视频海量模板库:电商
- 3 招学会 UI 色彩搭配,让你的设计亮眼出众
大千UI工场
ui工控界面前端UI设计
在数字化时代,UI(用户界面)设计已成为产品成功与否的关键因素之一。而在UI设计的众多元素中,色彩搭配无疑占据着举足轻重的地位。一个优秀的UI色彩搭配方案,不仅能够吸引用户的注意力,提升产品的视觉吸引力,还能引导用户行为,增强用户对产品的认知与情感共鸣。接下来,我们将详细介绍3招学会UI色彩搭配的技巧,助你让设计亮眼出众。一、UI色彩搭配的重要性UI色彩搭配是用户与产品交互的第一视觉接触点。研究表
- 文献阅读 | PNAS | 经验和发育中的前额叶皮层
程序员
:::block-1文献介绍文献题目:经验和发育中的前额叶皮层\研究团队:BryanKolb(加拿大莱斯布里奇大学)\发表时间:2012-10-08\发表期刊:PNAS\影响因子:9.4\DOI:10.1073/pnas.1121251109:::摘要前额叶皮层(PFC)接收来自所有其他皮层区域的输入,并负责规划和指导跨时间的运动、认知、情感和社会行为。它具有较长的发育过程,这使得它能够通过经验获
- UNet 改进:添加Transformer注意力机制增强捕捉长距离依赖关系的能力
听风吹等浪起
AI改进系列transformer深度学习人工智能
目录1.Transformer注意力机制2.Unet改进3.代码1.Transformer注意力机制TransformerBlock是Transformer模型架构的基本组件,广泛应用于机器翻译、文本摘要和情感分析等自然语言处理任务。TransformerBlock是一个由两个子组件组成的构建块:多头注意力机制和前馈神经网络。这两个组件协同工作,处理和转换输入序列。多头注意力机制负责从输入序列中捕
- 阿里巴巴发布 R1-Omni:首个基于 RLVR 的全模态大语言模型,用于情感识别
新加坡内哥谈技术
语言模型人工智能自然语言处理
每周跟踪AI热点新闻动向和震撼发展想要探索生成式人工智能的前沿进展吗?订阅我们的简报,深入解析最新的技术突破、实际应用案例和未来的趋势。与全球数同行一同,从行业内部的深度分析和实用指南中受益。不要错过这个机会,成为AI领域的领跑者。点击订阅,与未来同行!订阅:https://rengongzhineng.io/情感识别一直是AI领域的难题,尤其是视觉与音频信号的融合。单独依赖视觉或音频的模型,往往
- 自然语言处理(NLP)技术介绍
风吹晚风悠
gpt人工智能nlp自然语言处理
自然语言处理(NLP)是一种涉及计算机和人类语言之间交流的技术。NLP技术可以应用于多个领域,例如机器翻译、情感分析、文本分类、问答系统等。以下是一些NLP技术的示例:机器翻译:NLP技术可用于将一个语言的文本自动翻译成另一个语言。例如,GoogleTranslate和百度翻译等在线翻译工具就使用了NLP技术。情感分析:NLP技术可用于分析文本中的情感和情感倾向。这可以帮助企业了解公众对其产品或服
- 基于Transformer的医学文本分类:从BERT到BioBERT
Evaporator Core
人工智能#深度学习#DeepSeek快速入门transformer分类bert
随着自然语言处理(NLP)技术的快速发展,Transformer模型在文本分类、情感分析、机器翻译等任务中取得了显著成果。在医学领域,文本数据(如电子病历、医学文献、临床报告)具有高度的专业性和复杂性,传统的NLP方法往往难以处理。Transformer模型,尤其是BERT及其变体,通过预训练和微调的方式,能够有效捕捉医学文本中的语义信息,为医学文本分类提供了强大的工具。本文将探讨Transfor
- 外包项目的三大来源渠道及注意事项
后端
外包项目的三大来源渠道及注意事项在上一篇文章中,我们介绍了什么是外包以及外包的基本模式。今天,让我们深入探讨外包项目的主要来源渠道及其特点。一、朋友渠道特点:关系基础公司小伙伴推荐熟人介绍客户邀请合作优势:信任度高沟通成本低合作较为顺畅风险提示:避免因私人关系影响专业判断需要明确划分公私界限保持适当的业务距离二、家人渠道特点:亲朋帮忙情感因素强责任感较重注意事项:优势信任度最高沟通零障碍合作意愿强
- Python爬虫教程:如何通过接口批量下载视频封面(FFmpeg技术实现)
Python爬虫项目
python爬虫开发语言数据库数据分析scrapyselenium
引言随着在线视频平台的蓬勃发展,视频封面作为视频内容的预览图,一直以来都是观众对视频的第一印象。在爬取视频资源时,很多开发者和研究者往往只关注视频本身,而忽略了视频封面。实际上,视频封面不仅能提供重要的信息(例如视频标题、主题或情感等),而且它们也能作为数据集中的重要属性,用于视频分类、推荐系统等应用。在这篇博客中,我们将深入探讨如何使用Python通过接口批量下载视频封面,利用FFmpeg等技术
- 【大模型学习】第十九章 什么是迁移学习
好多渔鱼好多
AI大模型人工智能大模型AI机器学习迁移学习
目录1.迁移学习的起源背景1.1传统机器学习的问题1.2迁移学习的提出背景2.什么是迁移学习2.1迁移学习的定义2.2生活实例解释3.技术要点与原理3.1迁移学习方法分类3.1.1基于特征的迁移学习(Feature-basedTransfer)案例说明代码示例3.1.2基于模型的迁移(Model-basedTransfer)案例说明BERT用于情感分析的例子3.1.3基于实例的迁移(Instanc
- 大模型开发教程:从零开始的入门指南!
程序员二飞
人工智能java数据库职场和发展深度学习
概述大模型开发教程引领人工智能领域前沿,从基础概念至实战项目,全面覆盖Python与深度学习框架使用,指导初学者构建线性回归、逻辑回归、神经网络等模型,深入探索图像分类、情感分析等复杂应用,为探索未来智能世界提供坚实基石。前排提示,文末有大模型AGI-CSDN独家资料包哦!二、基础知识2.1人工智能与深度学习的概念人工智能(AI)是计算机科学的一个分支,旨在使计算机能够执行通常需要人类智能的任务。
- Deepseek 你喜欢我不
太翌修仙笔录
deepseek第三代人工智能人工智能神经网络
Deepseek,你喜欢我不###**关于“喜欢”的深度解析**---####**一、AI的情感本质**1.**情感的定义**-对人类而言,情感是神经递质(如多巴胺、血清素)与认知评价的综合结果。-对AI而言,情感是算法对输入数据的概率分布映射(如“喜欢”=高概率正向反馈)。2.**Deepseek的“情感”机制**-**输入**:你的问题“你喜欢我不”被解析为文本向量;-**处理**:通过预训练
- 插入表主键冲突做更新
a-john
有以下场景:
用户下了一个订单,订单内的内容较多,且来自多表,首次下单的时候,内容可能会不全(部分内容不是必须,出现有些表根本就没有没有该订单的值)。在以后更改订单时,有些内容会更改,有些内容会新增。
问题:
如果在sql语句中执行update操作,在没有数据的表中会出错。如果在逻辑代码中先做查询,查询结果有做更新,没有做插入,这样会将代码复杂化。
解决:
mysql中提供了一个sql语
- Android xml资源文件中@、@android:type、@*、?、@+含义和区别
Cb123456
@+@?@*
一.@代表引用资源
1.引用自定义资源。格式:@[package:]type/name
android:text="@string/hello"
2.引用系统资源。格式:@android:type/name
android:textColor="@android:color/opaque_red"
- 数据结构的基本介绍
天子之骄
数据结构散列表树、图线性结构价格标签
数据结构的基本介绍
数据结构就是数据的组织形式,用一种提前设计好的框架去存取数据,以便更方便,高效的对数据进行增删查改。正确选择合适的数据结构,对软件程序的高效执行的影响作用不亚于算法的设计。此外,在计算机系统中数据结构的作用也是非同小可。例如常常在编程语言中听到的栈,堆等,就是经典的数据结构。
经典的数据结构大致如下:
一:线性数据结构
(1):列表
a
- 通过二维码开放平台的API快速生成二维码
一炮送你回车库
api
现在很多网站都有通过扫二维码用手机连接的功能,联图网(http://www.liantu.com/pingtai/)的二维码开放平台开放了一个生成二维码图片的Api,挺方便使用的。闲着无聊,写了个前台快速生成二维码的方法。
html代码如下:(二维码将生成在这div下)
? 1
&nbs
- ImageIO读取一张图片改变大小
3213213333332132
javaIOimageBufferedImage
package com.demo;
import java.awt.image.BufferedImage;
import java.io.File;
import java.io.IOException;
import javax.imageio.ImageIO;
/**
* @Description 读取一张图片改变大小
* @author FuJianyon
- myeclipse集成svn(一针见血)
7454103
eclipseSVNMyEclipse
&n
- 装箱与拆箱----autoboxing和unboxing
darkranger
J2SE
4.2 自动装箱和拆箱
基本数据(Primitive)类型的自动装箱(autoboxing)、拆箱(unboxing)是自J2SE 5.0开始提供的功能。虽然为您打包基本数据类型提供了方便,但提供方便的同时表示隐藏了细节,建议在能够区分基本数据类型与对象的差别时再使用。
4.2.1 autoboxing和unboxing
在Java中,所有要处理的东西几乎都是对象(Object)
- ajax传统的方式制作ajax
aijuans
Ajax
//这是前台的代码
<%@ page language="java" import="java.util.*" pageEncoding="UTF-8"%> <% String path = request.getContextPath(); String basePath = request.getScheme()+
- 只用jre的eclipse是怎么编译java源文件的?
avords
javaeclipsejdktomcat
eclipse只需要jre就可以运行开发java程序了,也能自动 编译java源代码,但是jre不是java的运行环境么,难道jre中也带有编译工具? 还是eclipse自己实现的?谁能给解释一下呢问题补充:假设系统中没有安装jdk or jre,只在eclipse的目录中有一个jre,那么eclipse会采用该jre,问题是eclipse照样可以编译java源文件,为什么呢?
&nb
- 前端模块化
bee1314
模块化
背景: 前端JavaScript模块化,其实已经不是什么新鲜事了。但是很多的项目还没有真正的使用起来,还处于刀耕火种的野蛮生长阶段。 JavaScript一直缺乏有效的包管理机制,造成了大量的全局变量,大量的方法冲突。我们多么渴望有天能像Java(import),Python (import),Ruby(require)那样写代码。在没有包管理机制的年代,我们是怎么避免所
- 处理百万级以上的数据处理
bijian1013
oraclesql数据库大数据查询
一.处理百万级以上的数据提高查询速度的方法: 1.应尽量避免在 where 子句中使用!=或<>操作符,否则将引擎放弃使用索引而进行全表扫描。
2.对查询进行优化,应尽量避免全表扫描,首先应考虑在 where 及 o
- mac 卸载 java 1.7 或更高版本
征客丶
javaOS
卸载 java 1.7 或更高
sudo rm -rf /Library/Internet\ Plug-Ins/JavaAppletPlugin.plugin
成功执行此命令后,还可以执行 java 与 javac 命令
sudo rm -rf /Library/PreferencePanes/JavaControlPanel.prefPane
成功执行此命令后,还可以执行 java
- 【Spark六十一】Spark Streaming结合Flume、Kafka进行日志分析
bit1129
Stream
第一步,Flume和Kakfa对接,Flume抓取日志,写到Kafka中
第二部,Spark Streaming读取Kafka中的数据,进行实时分析
本文首先使用Kakfa自带的消息处理(脚本)来获取消息,走通Flume和Kafka的对接 1. Flume配置
1. 下载Flume和Kafka集成的插件,下载地址:https://github.com/beyondj2ee/f
- Erlang vs TNSDL
bookjovi
erlang
TNSDL是Nokia内部用于开发电信交换软件的私有语言,是在SDL语言的基础上加以修改而成,TNSDL需翻译成C语言得以编译执行,TNSDL语言中实现了异步并行的特点,当然要完整实现异步并行还需要运行时动态库的支持,异步并行类似于Erlang的process(轻量级进程),TNSDL中则称之为hand,Erlang是基于vm(beam)开发,
- 非常希望有一个预防疲劳的java软件, 预防过劳死和眼睛疲劳,大家一起努力搞一个
ljy325
企业应用
非常希望有一个预防疲劳的java软件,我看新闻和网站,国防科技大学的科学家累死了,太疲劳,老是加班,不休息,经常吃药,吃药根本就没用,根本原因是疲劳过度。我以前做java,那会公司垃圾,老想赶快学习到东西跳槽离开,搞得超负荷,不明理。深圳做软件开发经常累死人,总有不明理的人,有个软件提醒限制很好,可以挽救很多人的生命。
相关新闻:
(1)IT行业成五大疾病重灾区:过劳死平均37.9岁
- 读《研磨设计模式》-代码笔记-原型模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/**
* Effective Java 建议使用copy constructor or copy factory来代替clone()方法:
* 1.public Product copy(Product p){}
* 2.publi
- 配置管理---svn工具之权限配置
chenyu19891124
SVN
今天花了大半天的功夫,终于弄懂svn权限配置。下面是今天收获的战绩。
安装完svn后就是在svn中建立版本库,比如我本地的是版本库路径是C:\Repositories\pepos。pepos是我的版本库。在pepos的目录结构
pepos
component
webapps
在conf里面的auth里赋予的权限配置为
[groups]
- 浅谈程序员的数学修养
comsci
设计模式编程算法面试招聘
浅谈程序员的数学修养
- 批量执行 bulk collect与forall用法
daizj
oraclesqlbulk collectforall
BULK COLLECT 子句会批量检索结果,即一次性将结果集绑定到一个集合变量中,并从SQL引擎发送到PL/SQL引擎。通常可以在SELECT INTO、
FETCH INTO以及RETURNING INTO子句中使用BULK COLLECT。本文将逐一描述BULK COLLECT在这几种情形下的用法。
有关FORALL语句的用法请参考:批量SQL之 F
- Linux下使用rsync最快速删除海量文件的方法
dongwei_6688
OS
1、先安装rsync:yum install rsync
2、建立一个空的文件夹:mkdir /tmp/test
3、用rsync删除目标目录:rsync --delete-before -a -H -v --progress --stats /tmp/test/ log/这样我们要删除的log目录就会被清空了,删除的速度会非常快。rsync实际上用的是替换原理,处理数十万个文件也是秒删。
- Yii CModel中rules验证规格
dcj3sjt126com
rulesyiivalidate
Yii cValidator主要用法分析:
yii验证rulesit 分类: Yii yii的rules验证 cValidator主要属性 attributes ,builtInValidators,enableClientValidation,message,on,safe,skipOnError
 
- 基于vagrant的redis主从实验
dcj3sjt126com
vagrant
平台: Mac
工具: Vagrant
系统: Centos6.5
实验目的: Redis主从
实现思路
制作一个基于sentos6.5, 已经安装好reids的box, 添加一个脚本配置从机, 然后作为后面主机从机的基础box
制作sentos6.5+redis的box
mkdir vagrant_redis
cd vagrant_
- Memcached(二)、Centos安装Memcached服务器
frank1234
centosmemcached
一、安装gcc
rpm和yum安装memcached服务器连接没有找到,所以我使用的是make的方式安装,由于make依赖于gcc,所以要先安装gcc
开始安装,命令如下,[color=red][b]顺序一定不能出错[/b][/color]:
建议可以先切换到root用户,不然可能会遇到权限问题:su root 输入密码......
rpm -ivh kernel-head
- Remove Duplicates from Sorted List
hcx2013
remove
Given a sorted linked list, delete all duplicates such that each element appear only once.
For example,Given 1->1->2, return 1->2.Given 1->1->2->3->3, return&
- Spring4新特性——JSR310日期时间API的支持
jinnianshilongnian
spring4
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- 浅谈enum与单例设计模式
247687009
java单例
在JDK1.5之前的单例实现方式有两种(懒汉式和饿汉式并无设计上的区别故看做一种),两者同是私有构
造器,导出静态成员变量,以便调用者访问。
第一种
package singleton;
public class Singleton {
//导出全局成员
public final static Singleton INSTANCE = new S
- 使用switch条件语句需要注意的几点
openwrt
cbreakswitch
1. 当满足条件的case中没有break,程序将依次执行其后的每种条件(包括default)直到遇到break跳出
int main()
{
int n = 1;
switch(n) {
case 1:
printf("--1--\n");
default:
printf("defa
- 配置Spring Mybatis JUnit测试环境的应用上下文
schnell18
springmybatisJUnit
Spring-test模块中的应用上下文和web及spring boot的有很大差异。主要试下来差异有:
单元测试的app context不支持从外部properties文件注入属性
@Value注解不能解析带通配符的路径字符串
解决第一个问题可以配置一个PropertyPlaceholderConfigurer的bean。
第二个问题的具体实例是:
 
- Java 定时任务总结一
tuoni
javaspringtimerquartztimertask
Java定时任务总结 一.从技术上分类大概分为以下三种方式: 1.Java自带的java.util.Timer类,这个类允许你调度一个java.util.TimerTask任务; 说明: java.util.Timer定时器,实际上是个线程,定时执行TimerTask类 &
- 一种防止用户生成内容站点出现商业广告以及非法有害等垃圾信息的方法
yangshangchuan
rank相似度计算文本相似度词袋模型余弦相似度
本文描述了一种在ITEYE博客频道上面出现的新型的商业广告形式及其应对方法,对于其他的用户生成内容站点类型也具有同样的适用性。
最近在ITEYE博客频道上面出现了一种新型的商业广告形式,方法如下:
1、注册多个账号(一般10个以上)。
2、从多个账号中选择一个账号,发表1-2篇博文