Given an array nums, there is a sliding window of size k which is moving from the very left of the array to the very right. You can only see the k numbers in the window. Each time the sliding window moves right by one position.
For example,
Given nums = [1,3,-1,-3,5,3,6,7]
, and k = 3.
Window position Max --------------- ----- [1 3 -1] -3 5 3 6 7 3 1 [3 -1 -3] 5 3 6 7 3 1 3 [-1 -3 5] 3 6 7 5 1 3 -1 [-3 5 3] 6 7 5 1 3 -1 -3 [5 3 6] 7 6 1 3 -1 -3 5 [3 6 7] 7
Therefore, return the max sliding window as [3,3,5,5,6,7]
.
Note:
You may assume k is always valid, 1 ≤ k ≤ input array's size.
Follow up:
Could you solve it in linear time?
Hint:
这道题给定了一个数组,还给了一个窗口大小k,让我们每次向右滑动一个数字,每次返回窗口内的数字的最大值,而且要求我们代码的时间复杂度为O(n)。提示我们要用双向队列deque来解题,并提示我们窗口中只留下有用的值,没用的全移除掉。果然Hard的题目我就是不会做,网上看到了别人的解法才明白,解法又巧妙有简洁,膜拜啊。大概思路是用双向队列保存数字的下标,遍历整个数组,如果此时队列的首元素是i - k的话,表示此时窗口向右移了一步,则移除队首元素。然后比较队尾元素和将要进来的值,如果小的话就都移除,然后此时我们把队首元素加入结果中即可,参见代码如下:
class Solution { public: vector<int> maxSlidingWindow(vector<int>& nums, int k) { vector<int> res; deque<int> q; for (int i = 0; i < nums.size(); ++i) { if (!q.empty() && q.front() == i - k) q.pop_front(); while (!q.empty() && nums[q.back()] < nums[i]) q.pop_back(); q.push_back(i); if (i >= k - 1) res.push_back(nums[q.front()]); } return res; } };
参考资料:
https://leetcode.com/discuss/46594/clean-c-o-n-solution-using-a-deque