HDU 2064 汉诺塔III

汉诺塔III

Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 7113    Accepted Submission(s): 3120


Problem Description
约19世纪末,在欧州的商店中出售一种智力玩具,在一块铜板上有三根杆,最左边的杆上自上而下、由小到大顺序串着由64个圆盘构成的塔。目的是将最左边杆上的盘全部移到右边的杆上,条件是一次只能移动一个盘,且不允许大盘放在小盘的上面。
现在我们改变游戏的玩法,不允许直接从最左(右)边移到最右(左)边(每次移动一定是移到中间杆或从中间移出),也不允许大盘放到下盘的上面。
Daisy已经做过原来的汉诺塔问题和汉诺塔II,但碰到这个问题时,她想了很久都不能解决,现在请你帮助她。现在有N个圆盘,她至少多少次移动才能把这些圆盘从最左边移到最右边?
 

 

Input
包含多组数据,每次输入一个N值(1<=N=35)。
 

 

Output
对于每组数据,输出移动最小的次数。
 

 

Sample Input
1 3 12
 

 

Sample Output
2 26 531440
 

 

Author
Rabbit
 

 

Source
 

 

Recommend
lcy
 
题中改变了原有的汉诺塔规则,而是  每次必须经过中间的柱子,尽管有些许变化但是推到过程是一样的(现设有A,B,C三个柱子,以及标号为1-N的盘子),既然不能将编号为N的盘子移动到C上,那么就必须先移动N到B上,这样的话就先有N- 1个盘子在C上这个状态,然后在移动N到C上之前又要把N-1个盘子移动到A上,要达到最终目的的话,就要再把N-1个盘子移动到C上。
  上述过程就得到一个递推式 F[N]= 3* F[N-1]+ 2, 得到F[N]= 3^ N- 1。
 
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>

using namespace std;

int main(){

    //freopen("input.txt","r",stdin);

    int n;
    while(~scanf("%d",&n)){
        long long ans=1;
        for(int i=1;i<=n;i++)
            ans*=3;
        ans-=1;
        cout<<ans<<endl;
    }
    return 0;
}

 

 

你可能感兴趣的:(HDU)