文本分类KNN算法

kNN算法简介: 
       kNN(k Nearest Neighbors)算法又叫k最临近方法, 总体来说kNN算法是相对比较容易理解的算法之一,假设每一个类包含多个样本数据,而且每个数据都有一个唯一的类标记表示这些样本是属于哪一个分类, kNN就是计算每个样本数据到待分类数据的距离,取和待分类数据最近的k各样本数据,那么这个k个样本数据中哪个类别的样本数据占多数,则待分类数据就属于该类别。 

      

       KNN方法虽然从原理上也依赖于极限定理,但在类别决策时,只与极少量的相邻样本有关。因此,采用这种方法可以较好地避免样本的不平衡问题。另外,由于KNN方法主要靠周围有限的邻近的样本,而不是靠判别类域的方法来确定所属类别的,因此对于类域的交叉或重叠较多的待分样本集来说, KNN方法较其他方法更为适合。

    该方法的不足之处是计算量较大,因为对每一个待分类的文本都要计算它到全体已知样本的距离,才能求得它的K个最近邻点。目前常用的解决方法是事先对已知样本点进行剪辑,事先去除对分类作用不大的样本。另外还有一种Reverse KNN法,能降低KNN算法的计算复杂度,提高分类的效率。

    该算法比较适用于样本容量比较大的类域的自动分类,而那些样本容量较小的类域采用这种算法比较容易产生误分。

 

k近邻分类器具有良好的文本分类效果,对仿真实验结果的统计分析表明:作为文本分类器,k近邻仅次于支持向量机,明显优于线性最小二乘拟合、朴素贝叶斯和神经网络

你可能感兴趣的:(算法)