0. 引言
(1) $\dps{\int_{|z-a|=\rho}\frac{1}{z-a}\rd z=2\pi i\neq 0}$: 有奇点 (在 $|z|>0$: 二连通区域内解析), 周线积分 $\neq 0$;
(2) $\dps{\int_{0\to 1+i}\Re z\rd z=\frac{1+i}{2}}$, $\dps{\int_{0\to 1}+\int_{1+1+i}\Re z\rd z=\frac{1}{2}+i}$: 不解析, 积分与路径有关, 周线积分 $\neq 0$.
1. Cauchy 积分定理 设 $D$ 为单连通区域, $f$ 在 $D$ 内解析, $C$ 为 $D$ 内任一周线, 则 $\dps{\int_C f(z)\rd z=0}$.
证明 (假设 $f'$ 连续) $$\beex \bea \int_C f(z)\rd z &=\int_C [u+iv]\cdot [\rd x+i\rd y]\\ &=\int_C [u\rd x-v\rd y]+i\int_C [v\rd x+u\rd y]\\ &=\iint_{I(C)} [-v_x-u_y]\rd x\rd y +\iint_{I(C)} [u_x-v_y]\rd x\rd y\\ &=0. \eea \eeex$$
(1) 推论
a. 设 $D$ 为单连通区域, $f$ 在 $D$ 内解析, $C$ 为 $D$ 内任一闭曲线, 则 $\dps{\int_Cf(z)\rd z=0}$. (画图证明)
b. 设 $D$ 为单连通区域, $f$ 在 $D$ 内解析, 则 $f$ 在 $D$ 内的积分与路径无关, 而 $$\bex \forall\ z_0, z\in D,\quad\int_{z_0}^z f(\zeta)\rd \zeta \eex$$ 与所选的从 $z_0$ 到 $z$ 的路径无关. (画图说明)
(2) 推广
a. 设 $C$ 是一条周线, $D=I(C)$, $f$ 在 $\bar D$ 上解析, 则 $\dps{\int_Cf(z)\rd z=0}$. (画图说明)
b. 设 $C$ 是一条周线, $D=I(C)$, $f$ 在 $D$ 内解析, 在 $\bar D$ 上连续 (或称连续到 $C$), 则 $\dps{\int_Cf(z)\rd z=0}$.
c. 复周线: 有界 $(n+1)$ 连通区域的边界 $C=C_0+C_1^-+\cdots+C_n^-$ (画图说明, 指出方向).
d. 设 $D$ 为 $(n+1)$ 连通区域, $f$ 在 $D$ 内解析, 在 $\bar D$ 上连续, 则 $\dps{\int_Cf(z)\rd z=0}$.
(3) 应用
a. 设 $C:|z|=1$, 求 $\dps{\int_C\frac{\rd z}{z+2}}$ 及 $\dps{\int_0^\pi \frac{1+2\cos \tt}{5+4\cos \tt}\rd \tt}$ 的值 (用 Cauchy 定理)
b. 设 $\sqrt{z}$ 确定在沿负实轴割破了的 $z$ 平面上, 且 $w(1) =-1$. 求 $\dps{\int_{|z-1|=1}\sqrt{z}\rd z}$ (用 (2) b).
c. 设 $a$ 为周线 $C$ 内一点, 求 $\dps{\int_C\frac{\rd z}{(z-a)^n}\ (n\in\bbZ)}$ (用 (2) c).
d. 求 $\dps{\int_{|z|=2}\frac{2z^2-z+1}{z-1}\rd z}$.
解答: $$\beex \bea \int_{|z|=2}\frac{2z^2-z+1}{z-1}\rd z &=\int_{|z|=2}\frac{(z-1)^2+3(z-1)+2}{z-1}\rd z\\ &=\int_{|z|=2}[(z-1)+3]\rd z+2\int_{|z|=2}\frac{1}{z-1}\rd z\\ &=0+2\cdot 2\pi i\\ &=4\pi i. \eea \eeex$$
e. 求 $\dps{\int_{|z|=1}\frac{2z^2-z+1}{(z-1)^2}\rd z}$ (答案: $6\pi i$).
2. 不定积分
(1) 定义: 设 $D$ 为单连通区域, $f$ 在 $D$ 内解析, $z_0\in D$, 则 $$\bex F(z)=\int_{z_0}^z f(\zeta)\rd \zeta,\quad z\in D \eex$$ (变上限积分) 称为 $f$ 的一个不定积分 (原函数).
(2) $F(z)$ 在 $D$ 内解析, 且 $F'(z)=f(z)$.
(3) N-L 公式: $$\bex \int_{z_0}^z f(\zeta)\rd \zeta=F(z)-F(z_0). \eex$$
作业: P 140 T 6.