(2)优化2
再对将a[j]插入到前面a[0…j-1]的有序区间所用的方法进行改写,用数据交换代替数据后移。如果a[j]前一个数据a[j-1] > a[j],就交换a[j]和a[j-1],再j--直到a[j-1] <= a[j]。这样也可以实现将一个新数据新并入到有序区间。
//插入排序
void Insertsort1(int a[], int n)
{
int i, j, k;
for (i = 1; i < n; i++)
{
//为a[i]在前面的a[0...i-1]有序区间中找一个合适的位置
for (j = i - 1; j >= 0; j--)
if (a[j] < a[i])
break;
//如找到了一个合适的位置
if (j != i - 1)
{
//将比a[i]大的数据向后移
int temp = a[i];
for (k = i - 1; k > j; k--)
a[k + 1] = a[k];
//将a[i]放到正确位置上
a[k + 1] = temp;
}
}
}
//优化1
void Insertsort2(int a[], int n)
{
int i, j;
for (i = 1; i < n; i++)
if (a[i] < a[i - 1])
{
int temp = a[i];
for (j = i - 1; j >= 0 && a[j] > temp; j--)
a[j + 1] = a[j];
a[j + 1] = temp;
}
}
//优化2
void Insertsort3(int a[], int n)
{
int i, j;
for (i = 1; i < n; i++)
for (j = i - 1; j >= 0 && a[j] > a[j + 1]; j--)
Swap(a[j], a[j + 1]);
}
3.4 算法分析
插入排序在实现上,通常采用in-place排序(即只需用到O(1)的额外空间的排序),因而在从后向前扫描过程中,需要反复把已排序元素逐步向后挪位,为最新元素提供插入空间。
4、希尔排序(Shell Sort)
1959年Shell发明,第一个突破O(n2)的排序算法,是简单插入排序的改进版。它与插入排序的不同之处在于,它会优先比较距离较远的元素。希尔排序又叫缩小增量排序。
4.1 算法描述
先将整个待排序的记录序列分割成为若干子序列分别进行直接插入排序,具体算法描述:
- 选择一个增量序列t1,t2,…,tk,其中ti>tj,tk=1;
- 按增量序列个数k,对序列进行k 趟排序;
- 每趟排序,根据对应的增量ti,将待排序列分割成若干长度为m 的子序列,分别对各子表进行直接插入排序。仅增量因子为1 时,整个序列作为一个表来处理,表长度即为整个序列的长度。
4.2 动图演示
4.3 代码实现
(1)优化1
shellsort1代码虽然对直观的理解希尔排序有帮助,但代码量太大了,不够简洁清晰。因此进行下改进和优化,以第二次排序为例,原来是每次从1A到1E,从2A到2E,可以改成从1B开始,先和1A比较,然后取2B与2A比较,再取1C与前面自己组内的数据比较…….。这种每次从数组第gap个元素开始,每个元素与自己组内的数据进行直接插入排序显然也是正确的。
(2)优化2
将直接插入排序部分用直接插入排序的第三种方法来改
//希尔排序
void shellsort1(int a[], int n)
{
int i, j, gap;
for (gap = n / 2; gap > 0; gap /= 2) //步长
for (i = 0; i < gap; i++) //直接插入排序
{
for (j = i + gap; j < n; j += gap)
if (a[j] < a[j - gap])
{
int temp = a[j];
int k = j - gap;
while (k >= 0 && a[k] > temp)
{
a[k + gap] = a[k];
k -= gap;
}
a[k + gap] = temp;
}
}
}
//优化1
void shellsort2(int a[], int n)
{
int j, gap;
for (gap = n / 2; gap > 0; gap /= 2)
for (j = gap; j < n; j++)//从数组第gap个元素开始
if (a[j] < a[j - gap])//每个元素与自己组内的数据进行直接插入排序
{
int temp = a[j];
int k = j - gap;
while (k >= 0 && a[k] > temp)
{
a[k + gap] = a[k];
k -= gap;
}
a[k + gap] = temp;
}
}
//优化2
void shellsort3(int a[], int n)
{
int i, j, gap;
for (gap = n / 2; gap > 0; gap /= 2)
for (i = gap; i < n; i++)
for (j = i - gap; j >= 0 && a[j] > a[j + gap]; j -= gap)
Swap(a[j], a[j + gap]);
}
4.4 算法分析
希尔排序的核心在于间隔序列的设定。既可以提前设定好间隔序列,也可以动态的定义间隔序列。
5、归并排序(Merge Sort)
归并排序是建立在归并操作上的一种有效的排序算法。该算法是采用分治法(Divide and Conquer)的一个非常典型的应用。将已有序的子序列合并,得到完全有序的序列;即先使每个子序列有序,再使子序列段间有序。若将两个有序表合并成一个有序表,称为2-路归并。
5.1 算法描述
- 把长度为n的输入序列分成两个长度为n/2的子序列;
- 对这两个子序列分别采用归并排序;
- 将两个排序好的子序列合并成一个最终的排序序列。
5.2 动图演示
5.3 代码实现
void mergeArray(int arr[], int first, int mid, int last, int temp[])
{
int i = first; //第一个序列开始位置
int j = mid + 1; //第二个序列开始位置
int m = mid; //第一个序列结束位置
int n = last; //第二个序列结束位置
int k = 0; //temp下标
while (i <= m && j <= n) //序列一二是否放完
{
if (arr[i] < arr[j]) //k一直++,i,j任意时刻只有一个++
temp[k++] = arr[i++];
else
temp[k++] = arr[j++];
}
while (i <= m) //序列一是否放完
{
temp[k++] = arr[i++];
}
while (i <= m && j <= n) //序列一二是否放完
{
temp[k++] = arr[j++];
}
//合并成一个有序序列
for (i = 0; i < k; i++)
{
arr[first + i] = temp[i];
}
}
void merge(int arr[], int first, int mid, int last, int temp[])
{
int mid;
if (first >= last)
return;
mid = (first + last) / 2;
merge(arr,first,mid,temp);
merge(arr, mid+1, last, temp);
mergeArray(arr, first, mid,last,temp);
}
void mergeSort(int arr[], int num)
{
int *temp = (int *)malloc(sizeof(arr[0])*num);
if (temp == NULL)
return;
merge(arr, 0, num - 1, temp);
}
5.4 算法分析
归并排序是一种稳定的排序方法。和选择排序一样,归并排序的性能不受输入数据的影响,但表现比选择排序好的多,因为始终都是O(nlogn)的时间复杂度。代价是需要额外的内存空间。
6、快速排序(Quick Sort)
快速排序的基本思想:通过一趟排序将待排记录分隔成独立的两部分,其中一部分记录的关键字均比另一部分的关键字小,则可分别对这两部分记录继续进行排序,以达到整个序列有序。
6.1 算法描述
快速排序使用分治法来把一个串(list)分为两个子串(sub-lists)。具体算法描述如下:
- 从数列中挑出一个元素,称为 “基准”(pivot);
- 重新排序数列,所有元素比基准值小的摆放在基准前面,所有元素比基准值大的摆在基准的后面(相同的数可以到任一边)。在这个分区退出之后,该基准就处于数列的中间位置。这个称为分区(partition)操作;
- 递归地(recursive)把小于基准值元素的子数列和大于基准值元素的子数列排序。
6.2 动图演示
6.3 代码实现
int QKPass(int r[], int left, int right)
{
int low = left;
int high = right;
r[0] = r[left];
while (low < high)
{
while (low < high && r[high] > r[0])
{
high--;
}
if (low < high)
{
r[low] = r[high];
low++;
}
while (low < high && r[low] < r[0])
{
low++;
}
if (low < high)
{
r[high] = r[low];
high--;
}
}
r[low] = r[0];
return low;
}
void QKSort(int r[], int low,int high)
{
if (low < high)
{
int pos = QKPass(r,low,high);
QKSort(r, low, pos - 1);
QKSort(r, pos + 1, high);
}
}
优化1:三平均分区法
选用待排数组最左边、最右边和最中间的三个元素的中间值作为中轴。通过比较选出其中的中值。取这3个值的好处是在实际问题中,出现近似顺序数据或逆序数据的概率较大,此时中间数据必然成为中值,而也是事实上的近似中值。万一遇到正好中间大两边小(或反之)的数据,取的值都接近最值,那么由于至少能将两部分分开,实际效率也会有2倍左右的增加,而且利于将数据略微打乱,破坏退化的结构。
数据集较小时,不必继续递归调用快速排序算法,而改为调用其他的对于小规模数据集处理能力较强的排序算法来完成。Introsort就是这样的一种算法,它开始采用快速排序算法进行排序,当递归达到一定深度时就改为堆排序来处理。克服了快速排序在小规模数据集处理中复杂的中轴选择,也确保了堆排序在最坏情况下O(n log n)的复杂度。
//introsort 算法实现
//数据量的分界线,决定了使用quick sort/heap sort还是insertion sort
const int threshold=16;
//堆排序用到的辅助函数
int parent(int i)
{
return (int)((i-1)/2);
}
int left(int i)
{
return 2 * i+1;
}
int right(int i)
{
return (2 * i + 2);
}
void heapShiftDown(int heap[], int i, int begin,int end)
{
int l = left(i-begin)+begin;
int r = right(i-begin)+begin;
int largest=i;
//找出左右字节点与父节点中的最大者
if(l < end && heap[l] > heap[largest])
largest = l;
if(r < end && heap[r] > heap[largest])
largest = r;
//若最大者不为父节点,则需交换数据,并持续向下滚动至满足最大堆特性
if(largest != i)
{
swap(heap[largest],heap[i]);
heapShiftDown(heap, largest, begin,end);
}
}
//自底向上的开始建堆,即从堆的倒数第二层开始
void buildHeap(int heap[],int begin,int end)
{
for(int i = (begin+end)/2; i >= begin; i--)
{
heapShiftDown(heap, i, begin,end);
}
}
//堆排序
void heapSort(int heap[], int begin,int end)
{
buildHeap(heap,begin,end);
for(int i = end; i >begin; i--)
{
swap(heap[begin],heap[i]);
heapShiftDown(heap,begin,begin, i);
}
}
//插入排序
void insertionSort(int array[],int len)
{
int i,j,temp;
for(i=1;i0 && temp < array[j-1];j--)//compare the new array with temp(maybe -1?)
{
array[j]=array[j-1];//all larger elements are moved one pot to the right
}
array[j]=temp;
}
}
//三点中值
int median3(int array[],int first,int median,int end)
{
if(array[first]threshold) //子数组数据量大小,则交给后面的插入排序进行处理
{
if(depthLimit==0) //递归深度过大,则由堆排序代替
{
heapSort(array,begin,end);
return ;
}
--depthLimit;
//使用quick sort进行排序
int cut=partition(array,begin,end,
median3(array,begin,begin+(end-begin)/2,end));
introSortLoop(array,cut,end,depthLimit);
end=cut; //对左半段进行递归的sort
}
}
//计算最大容忍的递归深度
int lg(int n)
{
int k;
for(k=0;n>1;n>>=1) ++k;
return k;
}
//霸气的introsort
void introSort(int array[],int len)
{
if(len!=1)
{
introSortLoop(array,0,len-1,lg(len)*2);
insertionSort(array,len);
}
}
优化2:当分区的规模达到一定小时,便停止快速排序算法。即快速排序算法的最终产物是一个“几乎”排序完成的有序数列。数列中有部分元素并没有排到最终的有序序列的位置上,但是这种元素并不多。可以对这种“几乎”完成排序的数列使用插入排序算法进行排序以最终完成整个排序过程。因为插入排序对于这种“几乎”完成的排序数列有着接近线性的复杂度。这一改进被证明比持续使用快速排序算法要有效的多。
优化3:在递归排序子分区的时候,总是选择优先排序那个最小的分区。这个选择能够更加有效的利用存储空间从而从整体上加速算法的执行。
对于快速排序算法来说,实际上大量的时间都消耗在了分区上面,尤其是当要分区的所有的元素值都相等时,一般的快速排序算法就陷入了最坏的一种情况,也即反复的交换相同的元素并返回最差的中轴值。对于这种情况的一种改进办法就是将分区分为三块而不是原来的两块:一块是小于中轴值的所有元素,一块是等于中轴值的所有元素,另一块是大于中轴值的所有元素。另一种简单的改进方法是,当分区完成后,如果发现最左和最右两个元素值相等的话就避免递归调用而采用其他的排序算法来完成。
7、堆排序(Heap Sort)
堆排序(Heapsort)是指利用堆这种数据结构所设计的一种排序算法。堆积是一个近似完全二叉树的结构,并同时满足堆积的性质:即子结点的键值或索引总是小于(或者大于)它的父节点。
7.1 算法描述
- 将初始待排序关键字序列(R1,R2….Rn)构建成大顶堆,此堆为初始的无序区;
- 将堆顶元素R[1]与最后一个元素R[n]交换,此时得到新的无序区(R1,R2,……Rn-1)和新的有序区(Rn),且满足R[1,2…n-1]<=R[n];
- 由于交换后新的堆顶R[1]可能违反堆的性质,因此需要对当前无序区(R1,R2,……Rn-1)调整为新堆,然后再次将R[1]与无序区最后一个元素交换,得到新的无序区(R1,R2….Rn-2)和新的有序区(Rn-1,Rn)。不断重复此过程直到有序区的元素个数为n-1,则整个排序过程完成。
7.2 动图演示
7.3 代码实现
//堆排序
void HeapSort(int arr[],int len){
int i;
//初始化堆,从最后一个父节点开始
for(i = len/2 - 1; i >= 0; --i){
Heapify(arr,i,len);
}
//从堆中的取出最大的元素再调整堆
for(i = len - 1;i > 0;--i){
int temp = arr[i];
arr[i] = arr[0];
arr[0] = temp;
//调整成堆
Heapify(arr,0,i);
}
}
再看 调整成堆的函数
void Heapify(int arr[], int first, int end){
int father = first;
int son = father * 2 + 1;
while(son < end){
if(son + 1 < end && arr[son] < arr[son+1]) ++son;
//如果父节点大于子节点则表示调整完毕
if(arr[father] > arr[son]) break;
else {
//不然就交换父节点和子节点的元素
int temp = arr[father];
arr[father] = arr[son];
arr[son] = temp;
//父和子节点变成下一个要比较的位置
father = son;
son = 2 * father + 1;
}
}
}
var len; // 因为声明的多个函数都需要数据长度,所以把len设置成为全局变量
function buildMaxHeap(arr) { // 建立大顶堆
len = arr.length;
for (var i = Math.floor(len/2); i >= 0; i--) {
heapify(arr, i);
}
}
function heapify(arr, i) { // 堆调整
var left = 2 * i + 1,
right = 2 * i + 2,
largest = i;
if (left < len && arr[left] > arr[largest]) {
largest = left;
}
if (right < len && arr[right] > arr[largest]) {
largest = right;
}
if (largest != i) {
swap(arr, i, largest);
heapify(arr, largest);
}
}
function swap(arr, i, j) {
var temp = arr[i];
arr[i] = arr[j];
arr[j] = temp;
}
function heapSort(arr) {
buildMaxHeap(arr);
for (var i = arr.length - 1; i > 0; i--) {
swap(arr, 0, i);
len--;
heapify(arr, 0);
}
return arr;
}
8、计数排序(Counting Sort)
计数排序不是基于比较的排序算法,其核心在于将输入的数据值转化为键存储在额外开辟的数组空间中。 作为一种线性时间复杂度的排序,计数排序要求输入的数据必须是有确定范围的整数。
8.1 算法描述
- 找出待排序的数组中最大和最小的元素;
- 统计数组中每个值为i的元素出现的次数,存入数组C的第i项;
- 对所有的计数累加(从C中的第一个元素开始,每一项和前一项相加);
- 反向填充目标数组:将每个元素i放在新数组的第C(i)项,每放一个元素就将C(i)减去1。
8.2 动图演示
8.3 代码实现
function countingSort(arr, maxValue) {
var bucket =new Array(maxValue + 1),
sortedIndex = 0;
arrLen = arr.length,
bucketLen = maxValue + 1;
for (var i = 0; i < arrLen; i++) {
if (!bucket[arr[i]]) {
bucket[arr[i]] = 0;
}
bucket[arr[i]]++;
}
for (var j = 0; j < bucketLen; j++) {
while(bucket[j] > 0) {
arr[sortedIndex++] = j;
bucket[j]--;
}
}
return arr;
}
8.4 算法分析
计数排序是一个稳定的排序算法。当输入的元素是 n 个 0到 k 之间的整数时,时间复杂度是O(n+k),空间复杂度也是O(n+k),其排序速度快于任何比较排序算法。当k不是很大并且序列比较集中时,计数排序是一个很有效的排序算法。
9、桶排序(Bucket Sort)
桶排序是计数排序的升级版。它利用了函数的映射关系,高效与否的关键就在于这个映射函数的确定。桶排序 (Bucket sort)的工作的原理:假设输入数据服从均匀分布,将数据分到有限数量的桶里,每个桶再分别排序(有可能再使用别的排序算法或是以递归方式继续使用桶排序进行排)。
9.1 算法描述
- 设置一个定量的数组当作空桶;
- 遍历输入数据,并且把数据一个一个放到对应的桶里去;
- 对每个不是空的桶进行排序;
- 从不是空的桶里把排好序的数据拼接起来。
9.2 图片演示
9.3 代码实现
function bucketSort(arr, bucketSize) {
if (arr.length === 0) {
return arr;
}
var i;
var minValue = arr[0];
var maxValue = arr[0];
for (i = 1; i < arr.length; i++) {
if (arr[i] < minValue) {
minValue = arr[i]; // 输入数据的最小值
}else if (arr[i] > maxValue) {
maxValue = arr[i]; // 输入数据的最大值
}
}
// 桶的初始化
var DEFAULT_BUCKET_SIZE = 5; // 设置桶的默认数量为5
bucketSize = bucketSize || DEFAULT_BUCKET_SIZE;
var bucketCount = Math.floor((maxValue - minValue) / bucketSize) + 1;
var buckets =new Array(bucketCount);
for (i = 0; i < buckets.length; i++) {
buckets[i] = [];
}
// 利用映射函数将数据分配到各个桶中
for (i = 0; i < arr.length; i++) {
buckets[Math.floor((arr[i] - minValue) / bucketSize)].push(arr[i]);
}
arr.length = 0;
for (i = 0; i < buckets.length; i++) {
insertionSort(buckets[i]); // 对每个桶进行排序,这里使用了插入排序
for (var j = 0; j < buckets[i].length; j++) {
arr.push(buckets[i][j]);
}
}
return arr;
}
9.4 算法分析
桶排序最好情况下使用线性时间O(n),桶排序的时间复杂度,取决与对各个桶之间数据进行排序的时间复杂度,因为其它部分的时间复杂度都为O(n)。很显然,桶划分的越小,各个桶之间的数据越少,排序所用的时间也会越少。但相应的空间消耗就会增大。
10、基数排序(Radix Sort)
基数排序是按照低位先排序,然后收集;再按照高位排序,然后再收集;依次类推,直到最高位。有时候有些属性是有优先级顺序的,先按低优先级排序,再按高优先级排序。最后的次序就是高优先级高的在前,高优先级相同的低优先级高的在前。
10.1 算法描述
- 取得数组中的最大数,并取得位数;
- arr为原始数组,从最低位开始取每个位组成radix数组;
- 对radix进行计数排序(利用计数排序适用于小范围数的特点);
10.2 动图演示
10.3 代码实现
// LSD Radix Sort
var counter = [];
function radixSort(arr, maxDigit) {
var mod = 10;
var dev = 1;
for (var i = 0; i < maxDigit; i++, dev *= 10, mod *= 10) {
for(var j = 0; j < arr.length; j++) {
var bucket = parseInt((arr[j] % mod) / dev);
if(counter[bucket]==null) {
counter[bucket] = [];
}
counter[bucket].push(arr[j]);
}
var pos = 0;
for(var j = 0; j < counter.length; j++) {
var value =null;
if(counter[j]!=null) {
while ((value = counter[j].shift()) !=null) {
arr[pos++] = value;
}
}
}
}
return arr;
}
10.4 算法分析
基数排序基于分别排序,分别收集,所以是稳定的。但基数排序的性能比桶排序要略差,每一次关键字的桶分配都需要O(n)的时间复杂度,而且分配之后得到新的关键字序列又需要O(n)的时间复杂度。假如待排数据可以分为d个关键字,则基数排序的时间复杂度将是O(d*2n) ,当然d要远远小于n,因此基本上还是线性级别的。
基数排序的空间复杂度为O(n+k),其中k为桶的数量。一般来说n>>k,因此额外空间需要大概n个左右。