深度学习实践经验:用Faster R-CNN训练行人检测数据集Caltech——准备工作

前言

Faster R-CNN是Ross Girshick大神在Fast R-CNN基础上提出的又一个更加快速、更高mAP的用于目标检测的深度学习框架,它对Fast R-CNN进行的最主要的优化就是在Region Proposal阶段,引入了Region Proposal Network (RPN)来进行Region Proposal,同时可以达到和检测网络共享整个图片的卷积网络特征的目标,使得region proposal几乎是cost free的。

关于Faster R-CNN的详细介绍,可以参考我上一篇博客。

Faster R-CNN的代码是开源的,有两个版本:MATLAB版本(faster_rcnn),Python版本(py-faster-rcnn)。

这里我主要使用的是Python版本,Python版本在测试期间会比MATLAB版本慢10%,因为Python layers中的一些操作是在CPU中执行的,但是准确率应该是差不多的。

准备工作1——py-faster-rcnn的编译安装测试

py-faster-rcnn的编译安装

  1. 克隆Faster R-CNN仓库:

    git clone --recursive https://github.com/rbgirshick/py-faster-rcnn.git

    一定要加上--recursive标志,假设克隆后的文件夹名字叫py-faster-rcnn

  2. 编译Cython模块:

    cd py-faster-rcnn/lib
    make
  3. 编译里面的Caffe和pycaffe:

    cd py-faster-rcnn/caffe-fast-rcnn
    
    # 按照编译Caffe的方法,进行编译
    
    
    # 注意Makefile.config的修改,这里不再赘述Caffe的安装
    
    
    # 编译
    
    make -j8 && make pycaffe
  4. 这里贴上我的Makefile.config文件代码,根据你的情况进行相应修改

    
    ## Refer to http://caffe.berkeleyvision.org/installation.html
    
    
    # Contributions simplifying and improving our build system are welcome!
    
    
    
    # cuDNN acceleration switch (uncomment to build with cuDNN).
    
    USE_CUDNN := 1
    
    
    # CPU-only switch (uncomment to build without GPU support).
    
    
    # CPU_ONLY := 1
    
    
    
    # uncomment to disable IO dependencies and corresponding data layers
    
    
    # USE_OPENCV := 0
    
    
    # USE_LEVELDB := 0
    
    
    # USE_LMDB := 0
    
    
    
    # uncomment to allow MDB_NOLOCK when reading LMDB files (only if necessary)
    
    
    # You should not set this flag if you will be reading LMDBs with any
    
    
    # possibility of simultaneous read and write
    
    
    # ALLOW_LMDB_NOLOCK := 1
    
    
    
    # Uncomment if you're using OpenCV 3
    
    OPENCV_VERSION := 3
    
    
    # To customize your choice of compiler, uncomment and set the following.
    
    
    # N.B. the default for Linux is g++ and the default for OSX is clang++
    
    
    # CUSTOM_CXX := g++
    
    
    
    # CUDA directory contains bin/ and lib/ directories that we need.
    
    CUDA_DIR := /usr/local/cuda
    
    # On Ubuntu 14.04, if cuda tools are installed via
    
    
    # "sudo apt-get install nvidia-cuda-toolkit" then use this instead:
    
    
    # CUDA_DIR := /usr
    
    
    
    # CUDA architecture setting: going with all of them.
    
    
    # For CUDA < 6.0, comment the *_50 lines for compatibility.
    
    CUDA_ARCH := -gencode arch=compute_20,code=sm_20 \
    -gencode arch=compute_20,code=sm_21 \
    -gencode arch=compute_30,code=sm_30 \
    -gencode arch=compute_35,code=sm_35 \
    -gencode arch=compute_50,code=sm_50 \
    -gencode arch=compute_50,code=compute_50
    
    
    # BLAS choice:
    
    
    # atlas for ATLAS (default)
    
    
    # mkl for MKL
    
    
    # open for OpenBlas
    
    BLAS :=mkl
    
    # Custom (MKL/ATLAS/OpenBLAS) include and lib directories.
    
    
    # Leave commented to accept the defaults for your choice of BLAS
    
    
    # (which should work)!
    
    
    # BLAS_INCLUDE := /path/to/your/blas
    
    
    # BLAS_LIB := /path/to/your/blas
    
    
    
    # Homebrew puts openblas in a directory that is not on the standard search path
    
    
    # BLAS_INCLUDE := $(shell brew --prefix openblas)/include
    
    
    # BLAS_LIB := $(shell brew --prefix openblas)/lib
    
    
    
    # This is required only if you will compile the matlab interface.
    
    
    # MATLAB directory should contain the mex binary in /bin.
    
    MATLAB_DIR := /usr/local/MATLAB/R2016b
    
    # MATLAB_DIR := /Applications/MATLAB_R2012b.app
    
    
    
    # NOTE: this is required only if you will compile the python interface.
    
    
    # We need to be able to find Python.h and numpy/arrayobject.h.
    
    
    # PYTHON_INCLUDE := /usr/include/python2.7 \
    
    /usr/lib/python2.7/dist-packages/numpy/core/include
    
    # Anaconda Python distribution is quite popular. Include path:
    
    
    # Verify anaconda location, sometimes it's in root.
    
    ANACONDA_HOME := $(HOME)/anaconda
    PYTHON_INCLUDE := $(ANACONDA_HOME)/include \
    $(ANACONDA_HOME)/include/python2.7 \
    $(ANACONDA_HOME)/lib/python2.7/site-packages/numpy/core/include \
    $ /usr/include/python2.7
    
    # Uncomment to use Python 3 (default is Python 2)
    
    
    # PYTHON_LIBRARIES := boost_python3 python3.5m
    
    
    # PYTHON_INCLUDE := /usr/include/python3.5m \
    
    
    # /usr/lib/python3.5/dist-packages/numpy/core/include
    
    
    
    # We need to be able to find libpythonX.X.so or .dylib.
    
    
    # PYTHON_LIB := /usr/lib
    
    PYTHON_LIB := $(ANACONDA_HOME)/lib
    
    
    # Homebrew installs numpy in a non standard path (keg only)
    
    
    # PYTHON_INCLUDE += $(dir $(shell python -c 'import numpy.core; print(numpy.core.__file__)'))/include
    
    
    # PYTHON_LIB += $(shell brew --prefix numpy)/lib
    
    
    
    # Uncomment to support layers written in Python (will link against Python libs)
    
    WITH_PYTHON_LAYER := 1
    
    
    # Whatever else you find you need goes here.
    
    
    # INCLUDE_DIRS := $(PYTHON_INCLUDE) /usr/local/include
    
    
    # LIBRARY_DIRS := $(PYTHON_LIB) /usr/local/lib /usr/lib
    
    INCLUDE_DIRS := $(PYTHON_INCLUDE) /usr/local/include /usr/include/hdf5/serial 
    LIBRARY_DIRS := $(PYTHON_LIB) /usr/local/lib /usr/lib /usr/lib/x86_64-linux-gnu /usr/lib/x86_64-linux-gnu/hdf5/serial
    
    
    # If Homebrew is installed at a non standard location (for example your home directory) and you use it for general dependencies
    
    
    # INCLUDE_DIRS += $(shell brew --prefix)/include
    
    
    # LIBRARY_DIRS += $(shell brew --prefix)/lib
    
    
    
    # Uncomment to use `pkg-config` to specify OpenCV library paths.
    
    
    # (Usually not necessary -- OpenCV libraries are normally installed in one of the above $LIBRARY_DIRS.)
    
    
    # USE_PKG_CONFIG := 1
    
    
    
    # N.B. both build and distribute dirs are cleared on `make clean`
    
    BUILD_DIR := build
    DISTRIBUTE_DIR := distribute
    
    
    # Uncomment for debugging. Does not work on OSX due to https://github.com/BVLC/caffe/issues/171
    
    
    # DEBUG := 1
    
    
    
    # The ID of the GPU that 'make runtest' will use to run unit tests.
    
    TEST_GPUID := 0
    
    
    # enable pretty build (comment to see full commands)
    
    Q ?= @

Demo运行

为了检验你的py-faster-rcnn是否成功安装,作者给出了一个demo,可以利用在PASCAL VOC2007数据集上体现训练好的模型,来进行demo的运行,步骤如下:

  1. 下载预训练好的Faster R-CNN检测器:

    cd py-faster-rcnn
    ./data/scripts/fetch_faster_rcnn_models.sh

    这条命令会自动下载名为faster_rcnn_models.tgz的文件,解压后会创建data/faster_rcnn_models文件夹,里面会有两个模型:

    • ZF_faster_rcnn_final.caffemodel:在ZF网络模型下训练所得
    • VGG16_faster_rcnn_final.caffemodel:在VGG16网络模型下训练所得。
  2. 运行demo:

    cd py-faster-rcnn
    ./tools/demo.py
  3. demo会检测5张图片,这5张图片放在data/demo/文件夹下,其中一张的检测结果如下:

    深度学习实践经验:用Faster R-CNN训练行人检测数据集Caltech——准备工作_第1张图片

  4. 至此如果上述过程没有出错,那么py-faster-rcnn算是成功编译安装。

准备工作2——Caltech数据集

由于Faster R-CNN的一部分实验是在PASCAL VOC2007数据集上进行的,所以要想用Faster R-CNN训练我们自己的数据集,首先应该搞清楚PASCAL VOC2007数据集中的目录、图片、标注格式,这样我们才能用自己的数据集制作出类似于PASCAL VOC2007类似的数据集,供Faster R-CNN来进行训练及测试。

获取PASCAL VOC2007数据集

这一部分不是必须的,如果你需要PASCAL VOC2007数据集,可以利用以下命令获取数据集,但我们下载VOC数据集的目的主要是观察他的文件结构和文件内容,以便于我们构建符合要求的自己的数据集。

  1. 创建一个专门用来存数据集的地方,假设是$HOME/data文件夹。

  2. 下载PASCAL VOC2007的训练、验证和测试数据集:

    cd $HOME/data
    wget http://host.robots.ox.ac.uk/pascal/VOC/voc2007/VOCtrainval_06-Nov-2007.tar
    wget http://host.robots.ox.ac.uk/pascal/VOC/voc2007/VOCtest_06-Nov-2007.tar
  3. 下载完后用以下命令解压:

    tar xvf VOCtrainval_06-Nov-2007.tar
    tar xvf VOCtest_06-Nov-2007.tar
  4. 会得到如下文件结构:

    $HOME/data/VOCdevkit/                        # 根文件夹
    $HOME/data/VOCdevkit/VOC2007                 # VOC2007文件夹
    $HOME/data/VOCdevkit/VOC2007/Annotations     # 标记文件夹
    $HOME/data/VOCdevkit/VOC2007/ImageSets       # 供train.txt、test.txt、val.txt等文件存放的文件夹
    $HOME/data/VOCdevkit/VOC2007/JPEGImages      # 存放图片文件夹
    
    # ... 以及其他的文件夹及子文件夹 ...
    
  5. 创建快捷方式symlinks来连接到VOC数据集存放的地方:

    cd py-faster-rcnn/data
    ln -s $HOME/data/VOCdevkit/ VOCdevkit

    这里需要把$HOME/data/VOCdevkit/改为你存放VOCdevkit文件夹的路径

    最好使用symlinks来在共享同一份数据集,防止数据集多处拷贝,占用空间。

  6. 至此VOC数据集创建完毕。

PASCAL VOC数据集的分析

PASCAL VOC数据集的文件结构,如下:

└── VOCdevkit
    └── VOC2007 
        ├── Annotations  
        ├── ImageSets  
        │   ├── Layout  
        │   ├── Main  
        │   └── Segmentation  
        ├── JPEGImages  
        ├── SegmentationClass  
        └── SegmentationObject

Annotations

该文件夹主要用来存放图片标注(即为ground truth),文件是.xml格式,每张图片都有一个.xml文件与之对应。选取其中一个文件进行如下分析:

<annotation>
    <folder>VOC2007folder> # 必须有,父文件夹的名称
    <filename>000005.jpgfilename> # 必须有
    <source> # 可有可无
        <database>The VOC2007 Databasedatabase>
        <annotation>PASCAL VOC2007annotation>
        <image>flickrimage>
        <flickrid>325991873flickrid>
    source>
    <owner> # 可有可无
        <flickrid>archintent louisvilleflickrid>
        <name>?name>
    owner>
    <size> # 表示图像大小
        <width>500width>
        <height>375height>
        <depth>3depth>
    size>
    <segmented>0segmented> # 用于分割
    <object> # 目标信息,类别,bbox信息,图片中每个目标对应一个<object>标签
        <name>chairname>
        <pose>Rearpose>
        <truncated>0truncated>
        <difficult>0difficult>
        <bndbox>
            <xmin>263xmin>
            <ymin>211ymin>
            <xmax>324xmax>
            <ymax>339ymax>
        bndbox>
    object>
    <object>
        <name>chairname>
        <pose>Unspecifiedpose>
        <truncated>1truncated>
        <difficult>1difficult>
        <bndbox>
            <xmin>5xmin>
            <ymin>244ymin>
            <xmax>67xmax>
            <ymax>374ymax>
        bndbox>
    object>
annotation>

需要注意的,对于我们自己准备的xml标记文件中,每个标签中的标签中所对应的坐标值最好大于0,千万不能为负数,否则在训练过程中会报错:AssertionError: assert (boxes[:, 2]) >= boxes[:, 0]).all(),如下:

所以为了能够顺利训练,一定要仔细检查自己的xml文件中的左上角的坐标是否都为正。我被这个bug卡了一两天,最终把自己标记中所有的错误坐标找出来,才得以顺利训练。

ImageSets

ImageSets文件夹下有三个子文件夹,这里我们只需关注Main文件夹即可。Main文件夹下主要用到的是train.txt、val.txt、test.txt、trainval.txt文件,每个文件中写着供训练、验证、测试所用的文件名的集合,如下:

JPEGImages

JPEGImages文件夹下主要存放着所有的.jpg文件格式的输入图片,不在赘述。

制作VOC类似的Caltech数据集

经过以上对PASCAL VOC数据集文件结构的分析,我们仿照其,创建首先创建类似的文件结构即可:

└── VOCdevkit
    └── VOC2007 
    └── Caltech 
        ├── Annotations  
        ├── ImageSets   
        │   └── Main  
        └── JPEGImages

我建议将Caltech文件创建一个symlinks链接到VOCdevkit文件夹之下,因为这样会方便之后训练代码的修改。

  • 至于Caltech数据集如何从.seq文件转化为一张张.jpg图片,这里可以参考这里。
  • 至于Annotations中一个个.xml标记文件是实验室师兄给我的,上面提到的方法也可以转化,但是并不符合要求。
  • 至于ImageSets中的train.txt是根据.xml文件得来的,test.txt是每个seq中每隔30帧取一帧图片得来的。

参考博客

  1. FastRCNN 训练自己数据集 (1编译配置)
  2. 目标检测–Faster RCNN2

1

你可能感兴趣的:(经验,目标检测,深度学习)