《python与机器学习实战》笔记(一)

机器学习追求的是合理的假设空间的选取和模型的泛化能力。

人生苦短,我用python

单纯的lambda表达式

f = lambda x:pow(x,2)

f(2)

如上两行代码,定义一个lambda表达式f,输入参数为x,返回为x的平方

机器学习的过程:

  1. 获取与处理数据

  2. 选择与处理数据

  3. 评估与可视化结果

    import numpy as np
    import matplotlib.pyplot as plt
    
    
    # Read dataset
    x, y = [], []
    for sample in open("../_Data/prices.txt", "r"):
        xx, yy = sample.split(",")
        x.append(float(xx))
        y.append(float(yy))
    x, y = np.array(x), np.array(y)
    # Perform normalization
    x = (x - x.mean()) / x.std()
    # Scatter dataset
    plt.figure()
    plt.scatter(x, y, c="g", s=20)
    plt.show()
    
    x0 = np.linspace(-2, 4, 100)
    
    
    # Get regression model under LSE criterion with degree 'deg'
    def get_model(deg):
        return lambda input_x=x0: np.polyval(np.polyfit(x, y, deg), input_x)
    
    
    # Get the cost of regression model above under given x, y
    def get_cost(deg, input_x, input_y):
        return 0.5 * ((get_model(deg)(input_x) - input_y) ** 2).sum()
    
    # Set degrees
    test_set = (1, 4, 10)
    for d in test_set:
        print(get_cost(d, x, y))
    
    # Visualize results
    plt.scatter(x, y, c="g", s=20)
    for d in test_set:
        plt.plot(x0, get_model(d)(), label="degree = {}".format(d))
    plt.xlim(-2, 4)
    plt.ylim(1e5, 8e5)
    plt.legend()
    plt.show()
    


    96732238800.35292
    94112406641.67743
    75874846680.09283



你可能感兴趣的:(《python与机器学习实战》笔记(一))