- MATLAB图像拼接算法及实现
程序员小溪
算法matlab计算机视觉MATLAB人工智能
图像拼接算法及实现(一)论文关键词:图像拼接图像配准图像融合全景图论文摘要:图像拼接(imagemosaic)技术是将一组相互间重叠部分的图像序列进行空间匹配对准,经重采样合成后形成一幅包含各图像序列信息的宽视角场景的、完整的、高清晰的新图像的技术。图像拼接在摄影测量学、计算机视觉、遥感图像处理、医学图像分析、计算机图形学等领域有着广泛的应用价值。一般来说,图像拼接的过程由图像获取,图像配准,图像
- vue3结合openlayers,geoserver实现GIS一张图(WebGIS)
GIS小小白
javascriptvue.js前端arcgispostgresqlweb
一.前言不知不觉一年又要过去了,接触开发也就是这几个月的事情,感觉时间过的真快,今天就是除夕了,祝各位新年快乐呀,话说回来,其实在接触学习WebGIS的过程中还是蛮迷茫的,自己虽然是地信的学生,对于地理方面还有有一些自己的理解,但平时专业课学习的就是arcgis空间分析,遥感图像处理,WebGIS的部分并不是太重视,可能是因为没有那么多时间,毕竟这需要扎实的前端技能,不是一朝一夕就可以说明白的,当
- 遥感影像预处理及影像制图
安然喵
遥感影像在成像过程中受太阳高度角、大气状况、地球曲率、地形起伏、传感器自身的性能等因素影响,存在明显的几何和辐射畸形。在对遥感影像进行信息提取和定量分析之前,需要对其进行预处理,主要包括:几何校正、辐射校正、遥感图像处理和影像制图。经过预处理的影像,需经过图像处理及影像制图,再用于遥感解译。1.1遥感影像几何校正原始遥感影像通常存在严重的几何变形,这种几何变形一般分为系统性和非系统性两大类。系统性
- 2021-11-07
SatVision炼金士
python
缨帽变换(Sentinel-2)文章目录缨帽变换(Sentinel-2)前言缨帽变换关于Sentinel-2的缨帽变换系数1.系数前言缨帽变换(K-T变换),本质上是一种通过矩阵运算实现的图像增强,因其运算的前三个分量分别代表植被的绿度、亮度、湿度,因而在植被检测中得到广泛应用。常用遥感图像处理软件如:ENVI、ARCgisPro等只支持如早期的landsat、IKONOS、QuickBird、W
- 【论文笔记】Effect of Attention Mechanism in Deep Learning-Based Remote Sensing Image Processing:A S...
吃核桃用手夹
注意机制在基于深度学习的遥感图像处理中的作用:系统文献综述综述:概述了已开发的注意力机制以及如何将它们与不同的深度学习神经网络架构集成。此外,它旨在研究注意力机制对基于深度学习的RS图像处理的影响。分析了相应的基于注意力机制的深度学习(At-DL)方法的进展。进行了系统的文献回顾,以确定出版物、出版商、改进的DL方法、使用的数据类型、使用的注意力类型、使用At-DL方法实现的总体准确度的趋势,并提
- 无人机在海洋行业中的应用
成都远石
人工智能
无人机测绘技术是充分利用现有数据和信息资源的有效途径,是实现海洋资源与环境可持续发展的关键技术和重要手段,在资源调查、环境监测与预测中发挥了其他技术不可替代的作用。无人机测绘成果展现主要有DOM、DLG、实景三维等形式。1、无人机海岸带监测利用不同时期的无人机遥感影像,通过无人机遥感图像处理技术和GIS技术的集成应用,结合人机交互目视解译技术,对海岸线和湿地的动态变化进行监测。根据历史数据、区域规
- yolov5旋转目标检测-遥感图像检测-无人机旋转目标检测(附代码和原理)
从懒虫到爬虫
YOLO目标检测无人机
目前,无人机技术的快速发展带来了遥感图像处理领域的革命性改变。然而,由于无人机在飞行时可能会出现旋转的情况,因此对于旋转目标的检测也成为了一个重要的问题。针对这个问题,yolov5可以提供一种高效的解决方案。以下是介绍的分点:1.yolov5简介:yolov5是一种基于深度学习算法的目标检测框架,其最大的优势在于速度和精度的平衡。与其他目标检测框架相比,yolov5不需要使用复杂的预处理步骤,可以
- GEE学习笔记
It_张
遥感学习笔记
掩膜在遥感图像处理中,"掩膜"是指一种用于隐藏或保留图像特定部分的技术。掩膜通常是一个二进制图像,其中的像素值为0或1,分别表示遮蔽或保留。在去除云的情境中,掩膜通常用于隐藏图像中被云覆盖的部分,使得在分析中只考虑云影响较小或不受云覆盖的区域。这通过将云检测的结果与原始图像相乘来实现,其中云检测结果中的云部分对应的像素值为0,其他部分为1。这样,相乘后,原始图像中的云部分就被设置为0,即被遮蔽,而
- Python遥感图像处理指南(5)-投影、镶嵌、裁剪和叠加
gis收藏家
Python数据处理python图像处理开发语言
在前几章中,我们可以提取到水体掩膜,但我们的算法有时候不是很准确,需要其他数据源来进行对比分析,本章我们将利用全球水面数据集来进行教学操作,该数据提供了过去三十六年全球范围内水面的位置和时间分布图,并提供了有关水面范围和变化的统计数据,这是一个非常实用的全球水资源研究数据库。1、数据下载进入网站(自己想办法),找到之前哨兵影像对应的区块,我之前下载的是位于巴西的70W0Nand60W0N两个图幅,
- Python遥感图像处理指南(4)-质量波段和位掩码之影像云层信息提取
gis收藏家
Python数据处理图像处理人工智能
我们接着上一章的课程,本章继续开始图像处理分析。我们的最终目标是自动监测特定兴趣区域的反射光谱。这个区域可以是农作物、森林、湖泊或任何其他目标,目标是检查该区域光谱反射率随时间的变化情况,云层和阴影等不想要的像素可能会遮挡卫星传感器的视线,导致数据中出现噪音,或者像素可能因其他干扰而存在缺陷。这就是卫星质量评估QA波段的作用所在。大多数光学卫星图像产品都带有一个或多个QA波段,允许用户评估每个像素
- Python遥感图像处理指南(6)-绘制散点图和输出PDF报告
gis收藏家
Python数据处理python
今天我们来学习一些其他技能,在写论文时通常需要将结果图表进行整理,拼接图片很不方便,我们可以借助Pyhton将处理的图片和图标整合到PDF中输出,提高生产效率。1、环境安装安装PyPDF2包pipinstallPyPDF22、创建PDF我们将改造之前写的load_landsat_image方法,来实现PDF文件的创建。整个图像对于PDF文件来说太大,为了保持长宽比不变,我们将只接收宽度作为参数,然
- BFSIFT算法分析
AutoSleep
图像处理
BFSIFT算法简述硕士阶段研究的是遥感图像处理领域SAR图像处理方面知识,自然在论文阅读中接触到了BFSIFT算法。其实BFSIFT主要改进了光学SIFT算法在SAR图像匹配性能低下的问题。下面对SAR图像做一下简单的介绍:我们大家所熟知的光学图像一般噪声默认都属于加性噪声,默认服从高斯分布。SAR图像由于合成孔径雷达独特的成像方式,一般SAR图像噪声都属于乘性噪声,经过统计分析归纳其分布属于瑞
- 遥感图像处理——点云模型可视化模块、点云滤波模块实现方法
知来者逆
计算机视觉点云图像滤波遥感图像处理
点云处理软件框架点云模型可视化模块一、LOD算法LOD(LevelofDetail)主要用于优化渲染复杂几何数据的性能,特别是在三维模型和地形渲染方面。它通过在不同距离和尺度下使用不同精细度的模型,以提高渲染性能。LOD可以在近处呈现高细节的模型,在远处呈现简化的模型,从而减少需要渲染的数据量。在点云可视化方面,LOD技术也可用于提高点云的渲染性能。例如,在观察点云时,可以根据点云与观察者之间的距
- 基于深度学习的遥感图像变化差异可视化系统
xuehai996
深度学习人工智能
1.研究背景与意义项目参考AAAIAssociationfortheAdvancementofArtificialIntelligence研究背景与意义遥感图像变化差异可视化是遥感图像处理和分析的重要研究领域之一。随着遥感技术的快速发展和遥感数据的广泛应用,遥感图像的获取和处理变得越来越容易。然而,遥感图像通常具有大规模、高维度和复杂的特征,对于人类来说很难直观地理解和分析。因此,开发一种基于深度
- geemap学习笔记 06 geemap 非监督分类案例
弈落馨
geemappython学习分类聚类
文章目录前言一、非监督分类介绍1.定义2.分类方法介绍二、geemap中非监督分类详细步骤1.加载地图底图2.加载研究区影像数据3.检查影像属性4.选取训练数据(聚类中心点)5.训练集群(聚类中心点)6.影像分类7.分类结果类别颜色和图例修改8.分类结果导出总结前言遥感图像处理(processingofremotesensingimagedata)对遥感图像进行辐射校正和几何纠正、图像整饰、投影变
- Python遥感开发之波段的合并和拆分
等待着冬天的风
Python图像遥感Python遥感开发GDAL开发GDAL波段拆分GDAL波段合并
Python遥感开发之波段的合并和拆分1波段的合并2波段的拆分前言:主要使用GDAL完成多个波段(tif)合并成一个tif,以及一个多波段的tif拆分成单个的tif。参考了下列博客《Python遥感图像处理应用篇(二十):Python+GDAL批量提取多波段图像为单波段图像_多波段转单波段_空中旋转篮球的博客-CSDN博客》《Python遥感图像处理应用篇(二十五):Python+GDAL波段组合
- python:多波段遥感影像分离成单波段影像
_养乐多_
python处理遥感数据python
作者:CSDN@_养乐多_在遥感图像处理中,我们经常需要将多波段遥感影像拆分成多个单波段图像,以便进行各种分析和后续处理。本篇博客将介绍一个用Python编写的程序,该程序可以读取多波段遥感影像,将其拆分为单波段图像,并保存为单独的文件。本程序使用GDAL库来处理遥感影像数据,以及NumPy库来进行数组操作。结果如下图所示,选中的影像为输入的多波段影像,其他影像分别为拆分后的多波段影像。文章目录一
- 数字图像处理笔记--3
halooy
计算机视觉图像处理算法
内容:点运算图像滤波彩色图像处理面向某一目标对图像感兴趣的部分进行处理,以改善图像的视觉质量面向目标,不考虑降质原因(基于人类主观偏好)设计方法-图像增强的方法-空间运算:基于图像像素点灰度值进行增强处理-变换运算:从空间域变换到新的域里进行处理,处理结束后将处理结果再映射回空间域-伪色彩增强:把灰度图像映射到彩色空间,常用于遥感图像处理、医学图像处理点运算点运算的约束条件1)duiyu0≤r≤1
- 基于图神经网络的图像分类,遥感图像分析
「已注销」
神经网络分类机器学习
遥感图像分类法图像分类是与图像信息提取和增强不同的遥感图像处理中另一重要的方面,与图像增强后仍需人为解译不同,它企图用计算机做出定量的决定来代替人为视觉判译步骤。因此,分类处理后输出的是一幅专题图像。在此图像中,原来图像中的每一个象元依据不同的统计决定准则被划归为不同的地表覆盖类,由于是一种统计决定,必然伴随着某种错误的概率。因此,在逻辑上的合理要求是,对每一个象元所做的决定,应是使整个被分类面积
- ENVI&ArcGis——植被覆盖度提取
nochengzi
遥感ArcGis
遥感图像处理、遥感信息提取与应用分析一.影像预处理1几何校正第一步:打开并显示图像文件打开ENVIClassic,点击【主菜单>File>OpenImageFile】,打开tm00.img\tm02.img影像,并分别在Display中显示两个影像。图1加载数据第二步:启动几何校正模块主菜单>Map>Registration>SelectGCPs:ImagetoImage,打开几何校正模块。选择显
- 遥感原理与应用——遥感影像及其特征、遥感图像处理
Guanyu Liu
大气基础知识
遥感原理与应用第五、六章读书笔记遥感影像及其特征航空摄影及其影响特征航空摄影类型按摄影倾斜角分类按摄影实施方式分类按感光片和波段分类航空像片的几何特性投影类型航空像片的投影及构像规律航空像片的特征点线航空像片的相点位移航空像片的比例尺(略)航空像片的立体观察与立体量测(略)陆地卫星及其影像特征Lansat卫星系列SPOT卫星系列高空间分辨率陆地卫星气象卫星气象卫星类型气象卫星观测内容及特点美国NO
- 目视判读和计算机分类的区别,收藏|详细讲解遥感图像处理流程
是CC阿
目视判读和计算机分类的区别
一、预处理1.降噪处理(本文授权转载于公众号:竹山数据)由于传感器的因素,一些获取的遥感图像中,会出现周期性的噪声,我们必须对其进行消除或减弱方可使用。(1)除周期性噪声和尖锐性噪声周期性噪声一般重叠在原图像上,成为周期性的干涉图形,具有不同的幅度、频率、和相位。它形成一系列的尖峰或者亮斑,代表在某些空间频率位置最为突出。一般可以用带通或者槽形滤波的方法来消除。消除尖峰噪声,特别是与扫描方向不平行
- 基于MATLAB的数字图像处理(三)——地物提取与变化检测
SkyStarfall
数字图像处理matlab图像处理算法
在图像处理上,常常使用各种指数,例如:归一化差分植被指数归一化差分水体指数如何通过MATLAB实现通过各类指数提取对应地物,是遥感图像处理中常见的问题。使用各类指数时,一般先对整幅图像求归一化差分指数,之后通过设定阈值来对目标与非目标进行区分。如果在已经知道经验阈值的前提下,可以直接使用循环嵌套来提取目标。这里举例说明,以建筑物提取为例。在大面积遥感影像中,使用NDBI区分裸土与建筑略显困难,计算
- 矩阵运算库Armadillo,Eigen,MATCOM在windows+vs2010环境下的安装和测评
Galaxy馒头
编程EigenArmadilloOpenBLASMATCOM矩阵运算库
作为一个遥感图像处理方向研究生,笔者在编程的时候免不得要和矩阵运算打交道,各种矩阵乘法协方差特征值。虽然在自己的研究实验中更喜欢用MATLAB来作为工具,但是在完成工程项目编软件的时候必须要用C++来作为编程语言。在C++中并不能像MATLAB一样,非常方便的进行矩阵运算。当然也可以自己编一些列矩阵运算的函数(笔者以前就干过这事),不过这个运算效率实在无法满足要求。目前国际上提供了很多矩阵运算线性
- 遥感影像公开数据集:DeepGlobe Road 数据集
NoABug
C/C++
遥感影像公开数据集:DeepGlobeRoad数据集深度学习技术在遥感图像处理领域的应用日益广泛,其中包括了许多相关的数据集。本文将介绍一个广泛应用于道路提取的遥感影像数据集——DeepGlobeRoad数据集,并提供相关的代码实现。一、DeepGlobeRoad数据集简介DeepGlobeRoad数据集是一个通过卫星遥感影像获取的道路分割数据集。其由高分辨率的卫星图像以及在图像上标注的道路轮廓线
- 遥感影像的缨帽(K-T)变换Python实现
楠楠星球
MATLAB/python+图像处理python开发语言
(1)介绍缨帽变换(KirchhoffTransform,K-T变换)是一种在遥感图像处理中常用的技术,它可以有效地提取地物的空间特征和频谱信息。本文将对遥感缨帽变换的提出者、原理方法、公式、现在的发展、作用进行详细介绍,并附有相应的图解。(2)利用程序结果进行出图展示TM影像的前三个分量的物理意义:●亮度:TM的6个波段的加权和,反映了总体的反射值。●绿度:反映了近红外与可见光部分的差值,绿色生
- ArcGIS在水土流失模拟及分析中的实践技术应用
吹翻书页的风
地质地下水环境科学水文水利arcgis水土流失水土保持GPSGIS
查看原文>>>ArcGIS在水土流失模拟及分析中的实践技术应用目录一、水土保持与流域综合管理二、水土保持空间数据库建设三、水土流失模型介绍及实现四、水土保持专题地图制作五、矢量数据处理及因子(K)制备六、DEM数据处理及因子(LS)制备七、GPS数据处理及因子(R)制备八、遥感图像处理及因子(P、C)制备九、案例分析我国是世界上水土流失最为严重的国家之一,水土流失面广量大。据第一次全国水利普查成果
- ENVI 5.6软件安装教程
天青色等烟雨..
遥感arcgis经验分享
ENVI5.6是一款实现遥感图像处理的工具,已经广泛应用于科研、环境保护、气象、石油矿产勘探、农业、林业、医学、地球科学、公用设施管理、遥感工程、水利、海洋、测绘勘察和城市与区域规划等领域。安装步骤1.选择下载的安装包右键解压。2.解压后,右键以管理员身份运行安装程序。3.点击Next。4.选择【Iaccept……】点击Next。5.修改路径地址中的首字符C可更改安装位置,本例安装到D盘,点击Ne
- 【RS】ENVI5.6 栅格数据坐标转换
RS迷途小书童
RemoteSensing教程ENVI经验分享数据处理
ENVI是一个完整的遥感图像处理平台,广泛应用于科研、环境保护、气象、农业、林业、地球科学、遥感工程、水利、海洋等领域。目前ENVI已成为遥感影像处理的必备软件,包含辐射定标、大气校正、镶嵌裁剪、分类识别、阈值分割等多种功能。ENVI针对绝大部分的卫星影像都能很好的兼容,对于大部分的栅格和矢量数据格式也能很好的兼容,同时得益于ENVI的AppStore,用户可以使用很多三方插件实现影像的批处理、无
- 【RS】ENVI5.6.3 图像融合
RS迷途小书童
RemoteSensing教程计算机视觉人工智能图像处理经验分享笔记
图像融合是将低空间分辨率的多光谱图像或高光谱数据与高空间分辨率的单波段图像重采样生成一幅高分辨率多光谱图像的遥感图像处理技术,使得处理后的图像既有较高的空间分辨率,又具有多光谱特征。一般我们都是将多光谱波段与全色波段进行图像融合,保留多光谱波段的光谱信息的同时,保留全色波段的高空间分辨率。图像融合的关键是融合前两幅图像的精确配准以及处理过程中融合方法的选择。只有将两幅融合图像进行精确配准,才可能得
- java线程Thread和Runnable区别和联系
zx_code
javajvmthread多线程Runnable
我们都晓得java实现线程2种方式,一个是继承Thread,另一个是实现Runnable。
模拟窗口买票,第一例子继承thread,代码如下
package thread;
public class ThreadTest {
public static void main(String[] args) {
Thread1 t1 = new Thread1(
- 【转】JSON与XML的区别比较
丁_新
jsonxml
1.定义介绍
(1).XML定义
扩展标记语言 (Extensible Markup Language, XML) ,用于标记电子文件使其具有结构性的标记语言,可以用来标记数据、定义数据类型,是一种允许用户对自己的标记语言进行定义的源语言。 XML使用DTD(document type definition)文档类型定义来组织数据;格式统一,跨平台和语言,早已成为业界公认的标准。
XML是标
- c++ 实现五种基础的排序算法
CrazyMizzz
C++c算法
#include<iostream>
using namespace std;
//辅助函数,交换两数之值
template<class T>
void mySwap(T &x, T &y){
T temp = x;
x = y;
y = temp;
}
const int size = 10;
//一、用直接插入排
- 我的软件
麦田的设计者
我的软件音乐类娱乐放松
这是我写的一款app软件,耗时三个月,是一个根据央视节目开门大吉改变的,提供音调,猜歌曲名。1、手机拥有者在android手机市场下载本APP,同意权限,安装到手机上。2、游客初次进入时会有引导页面提醒用户注册。(同时软件自动播放背景音乐)。3、用户登录到主页后,会有五个模块。a、点击不胫而走,用户得到开门大吉首页部分新闻,点击进入有新闻详情。b、
- linux awk命令详解
被触发
linux awk
awk是行处理器: 相比较屏幕处理的优点,在处理庞大文件时不会出现内存溢出或是处理缓慢的问题,通常用来格式化文本信息
awk处理过程: 依次对每一行进行处理,然后输出
awk命令形式:
awk [-F|-f|-v] ‘BEGIN{} //{command1; command2} END{}’ file
[-F|-f|-v]大参数,-F指定分隔符,-f调用脚本,-v定义变量 var=val
- 各种语言比较
_wy_
编程语言
Java Ruby PHP 擅长领域
- oracle 中数据类型为clob的编辑
知了ing
oracle clob
public void updateKpiStatus(String kpiStatus,String taskId){
Connection dbc=null;
Statement stmt=null;
PreparedStatement ps=null;
try {
dbc = new DBConn().getNewConnection();
//stmt = db
- 分布式服务框架 Zookeeper -- 管理分布式环境中的数据
矮蛋蛋
zookeeper
原文地址:
http://www.ibm.com/developerworks/cn/opensource/os-cn-zookeeper/
安装和配置详解
本文介绍的 Zookeeper 是以 3.2.2 这个稳定版本为基础,最新的版本可以通过官网 http://hadoop.apache.org/zookeeper/来获取,Zookeeper 的安装非常简单,下面将从单机模式和集群模式两
- tomcat数据源
alafqq
tomcat
数据库
JNDI(Java Naming and Directory Interface,Java命名和目录接口)是一组在Java应用中访问命名和目录服务的API。
没有使用JNDI时我用要这样连接数据库:
03. Class.forName("com.mysql.jdbc.Driver");
04. conn
- 遍历的方法
百合不是茶
遍历
遍历
在java的泛
- linux查看硬件信息的命令
bijian1013
linux
linux查看硬件信息的命令
一.查看CPU:
cat /proc/cpuinfo
二.查看内存:
free
三.查看硬盘:
df
linux下查看硬件信息
1、lspci 列出所有PCI 设备;
lspci - list all PCI devices:列出机器中的PCI设备(声卡、显卡、Modem、网卡、USB、主板集成设备也能
- java常见的ClassNotFoundException
bijian1013
java
1.java.lang.ClassNotFoundException: org.apache.commons.logging.LogFactory 添加包common-logging.jar2.java.lang.ClassNotFoundException: javax.transaction.Synchronization
- 【Gson五】日期对象的序列化和反序列化
bit1129
反序列化
对日期类型的数据进行序列化和反序列化时,需要考虑如下问题:
1. 序列化时,Date对象序列化的字符串日期格式如何
2. 反序列化时,把日期字符串序列化为Date对象,也需要考虑日期格式问题
3. Date A -> str -> Date B,A和B对象是否equals
默认序列化和反序列化
import com
- 【Spark八十六】Spark Streaming之DStream vs. InputDStream
bit1129
Stream
1. DStream的类说明文档:
/**
* A Discretized Stream (DStream), the basic abstraction in Spark Streaming, is a continuous
* sequence of RDDs (of the same type) representing a continuous st
- 通过nginx获取header信息
ronin47
nginx header
1. 提取整个的Cookies内容到一个变量,然后可以在需要时引用,比如记录到日志里面,
if ( $http_cookie ~* "(.*)$") {
set $all_cookie $1;
}
变量$all_cookie就获得了cookie的值,可以用于运算了
- java-65.输入数字n,按顺序输出从1最大的n位10进制数。比如输入3,则输出1、2、3一直到最大的3位数即999
bylijinnan
java
参考了网上的http://blog.csdn.net/peasking_dd/article/details/6342984
写了个java版的:
public class Print_1_To_NDigit {
/**
* Q65.输入数字n,按顺序输出从1最大的n位10进制数。比如输入3,则输出1、2、3一直到最大的3位数即999
* 1.使用字符串
- Netty源码学习-ReplayingDecoder
bylijinnan
javanetty
ReplayingDecoder是FrameDecoder的子类,不熟悉FrameDecoder的,可以先看看
http://bylijinnan.iteye.com/blog/1982618
API说,ReplayingDecoder简化了操作,比如:
FrameDecoder在decode时,需要判断数据是否接收完全:
public class IntegerH
- js特殊字符过滤
cngolon
js特殊字符js特殊字符过滤
1.js中用正则表达式 过滤特殊字符, 校验所有输入域是否含有特殊符号function stripscript(s) { var pattern = new RegExp("[`~!@#$^&*()=|{}':;',\\[\\].<>/?~!@#¥……&*()——|{}【】‘;:”“'。,、?]"
- hibernate使用sql查询
ctrain
Hibernate
import java.util.Iterator;
import java.util.List;
import java.util.Map;
import org.hibernate.Hibernate;
import org.hibernate.SQLQuery;
import org.hibernate.Session;
import org.hibernate.Transa
- linux shell脚本中切换用户执行命令方法
daizj
linuxshell命令切换用户
经常在写shell脚本时,会碰到要以另外一个用户来执行相关命令,其方法简单记下:
1、执行单个命令:su - user -c "command"
如:下面命令是以test用户在/data目录下创建test123目录
[root@slave19 /data]# su - test -c "mkdir /data/test123" 
- 好的代码里只要一个 return 语句
dcj3sjt126com
return
别再这样写了:public boolean foo() { if (true) { return true; } else { return false;
- Android动画效果学习
dcj3sjt126com
android
1、透明动画效果
方法一:代码实现
public View onCreateView(LayoutInflater inflater, ViewGroup container, Bundle savedInstanceState)
{
View rootView = inflater.inflate(R.layout.fragment_main, container, fals
- linux复习笔记之bash shell (4)管道命令
eksliang
linux管道命令汇总linux管道命令linux常用管道命令
转载请出自出处:
http://eksliang.iteye.com/blog/2105461
bash命令执行的完毕以后,通常这个命令都会有返回结果,怎么对这个返回的结果做一些操作呢?那就得用管道命令‘|’。
上面那段话,简单说了下管道命令的作用,那什么事管道命令呢?
答:非常的经典的一句话,记住了,何为管
- Android系统中自定义按键的短按、双击、长按事件
gqdy365
android
在项目中碰到这样的问题:
由于系统中的按键在底层做了重新定义或者新增了按键,此时需要在APP层对按键事件(keyevent)做分解处理,模拟Android系统做法,把keyevent分解成:
1、单击事件:就是普通key的单击;
2、双击事件:500ms内同一按键单击两次;
3、长按事件:同一按键长按超过1000ms(系统中长按事件为500ms);
4、组合按键:两个以上按键同时按住;
- asp.net获取站点根目录下子目录的名称
hvt
.netC#asp.nethovertreeWeb Forms
使用Visual Studio建立一个.aspx文件(Web Forms),例如hovertree.aspx,在页面上加入一个ListBox代码如下:
<asp:ListBox runat="server" ID="lbKeleyiFolder" />
那么在页面上显示根目录子文件夹的代码如下:
string[] m_sub
- Eclipse程序员要掌握的常用快捷键
justjavac
javaeclipse快捷键ide
判断一个人的编程水平,就看他用键盘多,还是鼠标多。用键盘一是为了输入代码(当然了,也包括注释),再有就是熟练使用快捷键。 曾有人在豆瓣评
《卓有成效的程序员》:“人有多大懒,才有多大闲”。之前我整理了一个
程序员图书列表,目的也就是通过读书,让程序员变懒。 写道 程序员作为特殊的群体,有的人可以这么懒,懒到事情都交给机器去做,而有的人又可
- c++编程随记
lx.asymmetric
C++笔记
为了字体更好看,改变了格式……
&&运算符:
#include<iostream>
using namespace std;
int main(){
int a=-1,b=4,k;
k=(++a<0)&&!(b--
- linux标准IO缓冲机制研究
音频数据
linux
一、什么是缓存I/O(Buffered I/O)缓存I/O又被称作标准I/O,大多数文件系统默认I/O操作都是缓存I/O。在Linux的缓存I/O机制中,操作系统会将I/O的数据缓存在文件系统的页缓存(page cache)中,也就是说,数据会先被拷贝到操作系统内核的缓冲区中,然后才会从操作系统内核的缓冲区拷贝到应用程序的地址空间。1.缓存I/O有以下优点:A.缓存I/O使用了操作系统内核缓冲区,
- 随想 生活
暗黑小菠萝
生活
其实账户之前就申请了,但是决定要自己更新一些东西看也是最近。从毕业到现在已经一年了。没有进步是假的,但是有多大的进步可能只有我自己知道。
毕业的时候班里12个女生,真正最后做到软件开发的只要两个包括我,PS:我不是说测试不好。当时因为考研完全放弃找工作,考研失败,我想这只是我的借口。那个时候才想到为什么大学的时候不能好好的学习技术,增强自己的实战能力,以至于后来找工作比较费劲。我
- 我认为POJO是一个错误的概念
windshome
javaPOJO编程J2EE设计
这篇内容其实没有经过太多的深思熟虑,只是个人一时的感觉。从个人风格上来讲,我倾向简单质朴的设计开发理念;从方法论上,我更加倾向自顶向下的设计;从做事情的目标上来看,我追求质量优先,更愿意使用较为保守和稳妥的理念和方法。
&