Tensorflow Mask-RCNN(二)——非实时 检测视频

代码参考:https://github.com/Tony607/colab-mask-rcnn

具体安装请见上一篇博客

分两步走:
①把下载好的视频变成一帧一帧的,对每一帧进行detection,把框,label,scores都标在图上,保存成图片
② 把保存好的一帧一帧的图片,合成视频
有些同学可能不太懂怎么获取摄像头

下面的代码是一个小demo——如何获取摄像头或者获取本地视频,并显示在当前窗口上

import cv2
import numpy as np#添加模块和矩阵模块
cap=cv2.VideoCapture(0)
#打开摄像头,若打开本地视频,同opencv一样,只需将0换成("×××.avi")
while(1):    # get a frame   
    ret, frame = cap.read()    # show a frame   
    cv2.imshow("capture", frame)   
    if cv2.waitKey(1) & 0xFF == ord('q'):        
        break
cap.release()
cv2.destroyAllWindows()
第一步: 把下载好的视频变成一帧一帧的,用Mask RCNN检测物体
import cv2
import numpy as np
# 定义随机颜色函数
def random_colors(N):
    np.random.seed(1)
    colors=[tuple(255 * np.random.rand(3)) for _ in range(N)]
    return colors

def apply_mask(image,mask,color,alpha=0.5):
    for n, c in enumerate(color):
        image[:, :, n] = np.where(
            mask == 1,
            image[:, :, n] * (1 - alpha) + alpha * c,
            image[:, :, n]
        )
    return image


def display_instances(image, boxes, masks, ids, names, scores):
    """
        take the image and results and apply the mask, box, and Label
    """
    n_instances = boxes.shape[0]
    colors = random_colors(n_instances)

    if not n_instances:
        print('NO INSTANCES TO DISPLAY')
    else:
        assert boxes.shape[0] == masks.shape[-1] == ids.shape[0]

    for i, color in enumerate(colors):
        if not np.any(boxes[i]):
            continue

        y1, x1, y2, x2 = boxes[i]
        label = names[ids[i]]
        score = scores[i] if scores is not None else None
        caption = '{} {:.2f}'.format(label, score) if score else label
        mask = masks[:, :, i]

        image = apply_mask(image, mask, color)
        image = cv2.rectangle(image, (x1, y1), (x2, y2), color, 2)
        image = cv2.putText(
            image, caption, (x1, y1), cv2.FONT_HERSHEY_COMPLEX, 0.7, color, 2
        )

    return image

if __name__ == '__main__':
    """
        test everything
    """
    import os
    import sys
    from mrcnn import utils
    import mrcnn.model as modellib
    from mrcnn import visualize
    import coco
    
    # We use a K80 GPU with 24GB memory, which can fit 3 images.
    batch_size = 3

    #ROOT_DIR = os.getcwd()
    ROOT_DIR =os.path.abspath("../")      # 根目录的地址
    MODEL_DIR = os.path.join(ROOT_DIR, "logs")  
    VIDEO_DIR = os.path.join(ROOT_DIR, "videos")   #原始视频存放的文件夹
    VIDEO_SAVE_DIR = os.path.join(VIDEO_DIR, "save2")   #每一帧图片所存放的文件夹
    COCO_MODEL_PATH = os.path.join(ROOT_DIR, "mask_rcnn_coco.h5")
    if not os.path.exists(COCO_MODEL_PATH):
        utils.download_trained_weights(COCO_MODEL_PATH)

    class InferenceConfig(coco.CocoConfig):
        GPU_COUNT = 1
        IMAGES_PER_GPU = batch_size

    config = InferenceConfig()
    config.display()

    model = modellib.MaskRCNN(
        mode="inference", model_dir=MODEL_DIR, config=config
    )
    model.load_weights(COCO_MODEL_PATH, by_name=True)
    class_names = [
        'BG', 'person', 'bicycle', 'car', 'motorcycle', 'airplane',
        'bus', 'train', 'truck', 'boat', 'traffic light',
        'fire hydrant', 'stop sign', 'parking meter', 'bench', 'bird',
        'cat', 'dog', 'horse', 'sheep', 'cow', 'elephant', 'bear',
        'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag', 'tie',
        'suitcase', 'frisbee', 'skis', 'snowboard', 'sports ball',
        'kite', 'baseball bat', 'baseball glove', 'skateboard',
        'surfboard', 'tennis racket', 'bottle', 'wine glass', 'cup',
        'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple',
        'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza',
        'donut', 'cake', 'chair', 'couch', 'potted plant', 'bed',
        'dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote',
        'keyboard', 'cell phone', 'microwave', 'oven', 'toaster',
        'sink', 'refrigerator', 'book', 'clock', 'vase', 'scissors',
        'teddy bear', 'hair drier', 'toothbrush'
    ]

    capture = cv2.VideoCapture(os.path.join(VIDEO_DIR, 'mydesk.mp4'))  #这里是输入视频的文件名
    try:
        if not os.path.exists(VIDEO_SAVE_DIR):
            os.makedirs(VIDEO_SAVE_DIR)
    except OSError:
        print ('Error: Creating directory of data')
    frames = []
    frame_count = 0
    # these 2 lines can be removed if you dont have a 1080p camera.
    capture.set(cv2.CAP_PROP_FRAME_WIDTH, 1920)
    capture.set(cv2.CAP_PROP_FRAME_HEIGHT, 1080)

    while True:
        ret, frame = capture.read()
        # Bail out when the video file ends
        if not ret:
            break
        
        # Save each frame of the video to a list
        frame_count += 1
        frames.append(frame)
        print('frame_count :{0}'.format(frame_count))
        if len(frames) == batch_size:
            results = model.detect(frames, verbose=0)
            print('Predicted')
            for i, item in enumerate(zip(frames, results)):
                frame = item[0]
                r = item[1]
                frame = display_instances(
                    frame, r['rois'], r['masks'], r['class_ids'], class_names, r['scores']
                )
                name = '{0}.jpg'.format(frame_count + i - batch_size)
                name = os.path.join(VIDEO_SAVE_DIR, name)
                cv2.imwrite(name, frame)
                print('writing to file:{0}'.format(name))
            # Clear the frames array to start the next batch
            frames = []

    capture.release()
会在save2中生成每一帧图片对应的检测结果:
第二步:将文件夹中的每一帧图片合为一个视频

def make_video(outvid, images=None, fps=30, size=None,
               is_color=True, format="FMP4"):
    """
    Create a video from a list of images.
 
    @param      outvid      output video
    @param      images      list of images to use in the video
    @param      fps         frame per second
    @param      size        size of each frame
    @param      is_color    color
    @param      format      see http://www.fourcc.org/codecs.php
    @return                 see http://opencv-python-tutroals.readthedocs.org/en/latest/py_tutorials/py_gui/py_video_display/py_video_display.html
 
    The function relies on http://opencv-python-tutroals.readthedocs.org/en/latest/.
    By default, the video will have the size of the first image.
    It will resize every image to this size before adding them to the video.
    """
    from cv2 import VideoWriter, VideoWriter_fourcc, imread, resize
    fourcc = VideoWriter_fourcc(*format)
    vid = None
    for image in images:
        if not os.path.exists(image):
            raise FileNotFoundError(image)
        img = imread(image)
        if vid is None:
            if size is None:
                size = img.shape[1], img.shape[0]
            vid = VideoWriter(outvid, fourcc, float(fps), size, is_color)
        if size[0] != img.shape[1] and size[1] != img.shape[0]:
            img = resize(img, size)
        vid.write(img)
    #vid.release()
    return vid

import glob
import os

# Directory of images to run detection on
ROOT_DIR =os.path.abspath("../")
VIDEO_DIR = os.path.join(ROOT_DIR, "videos")
VIDEO_SAVE_DIR = os.path.join(VIDEO_DIR, "save2")
images = list(glob.iglob(os.path.join(VIDEO_SAVE_DIR, '*.*')))
# Sort the images by integer index
images = sorted(images, key=lambda x: float(os.path.split(x)[1][:-3]))

outvid = os.path.join(VIDEO_DIR, "mydesk_out.mp4")
make_video(outvid, images, fps=30)
print('make video success')

生成一个mydesk_out.mp4的文件夹
Tensorflow Mask-RCNN(二)——非实时 检测视频_第1张图片

你可能感兴趣的:(deep)